1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Disable warning for long symbol names in this file only
#include "itkImage.h"
#include "itkRecursiveGaussianImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageRegionConstIterator.h"
#include "itkTestingMacros.h"
#include <algorithm>
#include <numeric>
int
itkRecursiveGaussianImageFilterTest(int, char *[])
{
{ // 3D test
// Define the dimension of the images
constexpr unsigned int myDimension = 3;
// Declare the types of the images
using myImageType = itk::Image<float, myDimension>;
// Declare the type of the index to access images
using myIndexType = itk::Index<myDimension>;
// Declare the type of the size
using mySizeType = itk::Size<myDimension>;
// Declare the type of the Region
using myRegionType = itk::ImageRegion<myDimension>;
// Create the image
auto inputImage = myImageType::New();
// Define their size, and start index
mySizeType size;
size[0] = 100;
size[1] = 100;
size[2] = 100;
myIndexType start;
start.Fill(0);
myRegionType region{ start, size };
// Initialize Image A
inputImage->SetRegions(region);
inputImage->Allocate();
// Declare Iterator types apropriated for each image
using myIteratorType = itk::ImageRegionIteratorWithIndex<myImageType>;
// Create one iterator for the Input Image A (this is a light object)
myIteratorType it(inputImage, inputImage->GetRequestedRegion());
// Initialize the content of Image A
std::cout << "Input Image initialization " << std::endl;
while (!it.IsAtEnd())
{
it.Set(0.0);
++it;
}
size[0] = 60;
size[1] = 60;
size[2] = 60;
start[0] = 20;
start[1] = 20;
start[2] = 20;
// Create one iterator for an internal region
region.SetSize(size);
region.SetIndex(start);
myIteratorType itb(inputImage, region);
// Initialize the content the internal region
while (!itb.IsAtEnd())
{
itb.Set(100.0);
++itb;
}
// Declare the type for the Gaussian filter
using myGaussianFilterType = itk::RecursiveGaussianImageFilter<myImageType, myImageType>;
// Create a Filter
auto filter = myGaussianFilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, RecursiveGaussianImageFilter, RecursiveSeparableImageFilter);
unsigned int direction = 2; // apply along Z
filter->SetDirection(direction);
ITK_TEST_SET_GET_VALUE(direction, filter->GetDirection());
auto order = itk::GaussianOrderEnum::ZeroOrder;
filter->SetOrder(order);
ITK_TEST_SET_GET_VALUE(order, filter->GetOrder());
filter->SetZeroOrder();
ITK_TEST_SET_GET_VALUE(order, filter->GetOrder());
// Connect the input images
filter->SetInput(inputImage);
ITK_TEST_SET_GET_VALUE(inputImage, filter->GetInput());
// Execute the filter
std::cout << "Executing Smoothing filter...";
filter->Update();
std::cout << " Done !" << std::endl;
// Create a Filter
auto filter1 = myGaussianFilterType::New();
filter1->SetDirection(direction);
order = itk::GaussianOrderEnum::FirstOrder;
filter1->SetOrder(order);
ITK_TEST_SET_GET_VALUE(order, filter1->GetOrder());
filter1->SetFirstOrder();
ITK_TEST_SET_GET_VALUE(order, filter1->GetOrder());
// Connect the input images
filter1->SetInput(inputImage);
// Execute the filter1
std::cout << "Executing First Derivative filter...";
filter1->Update();
std::cout << " Done !" << std::endl;
// Create a Filter
auto filter2 = myGaussianFilterType::New();
filter2->SetDirection(direction);
order = itk::GaussianOrderEnum::SecondOrder;
filter2->SetOrder(order);
ITK_TEST_SET_GET_VALUE(order, filter2->GetOrder());
filter2->SetSecondOrder();
ITK_TEST_SET_GET_VALUE(order, filter2->GetOrder());
// Connect the input images
filter2->SetInput(inputImage);
// Execute the filter2
std::cout << "Executing Second Derivative filter...";
filter2->Update();
std::cout << " Done !" << std::endl;
}
{ // Test normalizations factors using a 1D image
std::cout << "Test normalizations factors using a 1-D image" << std::endl;
using PixelType = float;
using ImageType = itk::Image<PixelType, 1>;
using SizeType = ImageType::SizeType;
using IndexType = ImageType::IndexType;
using RegionType = ImageType::RegionType;
using SpacingType = ImageType::SpacingType;
using PixelRealType = itk::NumericTraits<PixelType>::RealType;
SizeType size;
size[0] = 21;
IndexType start;
start[0] = 0;
RegionType region;
region.SetIndex(start);
region.SetSize(size);
SpacingType spacing;
spacing[0] = 1.0;
auto inputImage = ImageType::New();
inputImage->SetRegions(region);
inputImage->Allocate();
inputImage->SetSpacing(spacing);
inputImage->FillBuffer(PixelType{});
IndexType index;
index[0] = (size[0] - 1) / 2; // the middle pixel
inputImage->SetPixel(index, static_cast<PixelType>(1000.0));
using FilterType = itk::RecursiveGaussianImageFilter<ImageType, ImageType>;
auto filter = FilterType::New();
filter->SetInput(inputImage);
std::cout << "Testing normalization across scales... ";
{ // begin of test for normalization across scales
auto normalizeAcrossScale = true;
ITK_TEST_SET_GET_BOOLEAN(filter, NormalizeAcrossScale, normalizeAcrossScale);
constexpr double sigmaA = 2.0;
filter->SetSigma(sigmaA);
ITK_TEST_SET_GET_VALUE(sigmaA, filter->GetSigma());
filter->Update();
const PixelType valueA = filter->GetOutput()->GetPixel(index);
normalizeAcrossScale = false;
filter->SetNormalizeAcrossScale(normalizeAcrossScale);
constexpr double sigmaB = 2.0;
filter->SetSigma(sigmaB);
filter->Update();
const PixelType valueB = filter->GetOutput()->GetPixel(index);
// note: for scale space normalization, no scaling should occur
// The additional scale-space testing is performed in a separate
// test.
if (itk::Math::abs(valueB - valueA) > 1e-4)
{
std::cout << "FAILED !" << std::endl;
std::cerr << "Error, Normalization across scales is failing" << std::endl;
std::cerr << "Central pixel at sigma = " << sigmaA << " = " << valueA << std::endl;
std::cerr << "Central pixel at sigma = " << sigmaB << " = " << valueB << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "PASSED !" << std::endl;
}
} // end of test for normalization across scales
std::cout << "Testing normalization... ";
{ // begin of test for normalization
filter->SetNormalizeAcrossScale(true);
// size of image is 21, so a sigma of 2 gives up 5 std-devs and
// an expected error of >1e-5 due to truncation
constexpr double sigmaA = 2.0;
filter->SetSigma(sigmaA);
filter->Update();
// the input is an impulse with a value of 1000
// the resulting convolution should aproximatly sum to the same
using IteratorType = itk::ImageRegionConstIterator<ImageType>;
IteratorType it(filter->GetOutput(), filter->GetOutput()->GetBufferedRegion());
std::vector<double> values;
while (!it.IsAtEnd())
{
values.push_back(it.Get());
++it;
}
// sort from smallest to largest for best numerical precision
std::sort(values.begin(), values.end());
double total = std::accumulate(values.begin(), values.end(), 0.0);
// 1000.0 is the value of the impulse
// compute absolute normalized error
double error = itk::Math::abs(total - 1000.0) / 1000.0;
if (error > 1e-3)
{
std::cout << "FAILED !" << std::endl;
std::cerr << "Error, Normalization is failing" << std::endl;
std::cerr << "Value of impulse is 1000.0" << std::endl;
std::cerr << "Total value after convolution is " << total << std::endl;
std::cout << "error: " << error << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "PASSED !" << std::endl;
}
} // end of test for normalization
std::cout << "Testing derivatives normalization " << std::endl;
{ // begin of test for normalization among derivatives
filter->SetNormalizeAcrossScale(false);
// Since one side of the Gaussian is monotonic we can
// use the middle-value theorem: The value of the derivative at
// index[0] - 2 must be bounded by the estimation of the derivative
// at index[0] -1 and index[0] -3. In the following we compute an
// estimation of derivatives by partial differences at this two
// positions and use them as bounds for the value of the first order
// derivative returned by the filter.
constexpr double sigmaC = 3.0;
filter->SetSigma(sigmaC);
filter->SetZeroOrder();
filter->Update();
index[0] = (size[0] - 1) / 2; // the middle pixel
const PixelRealType valueA = filter->GetOutput()->GetPixel(index);
index[0] -= 2;
const PixelRealType valueB = filter->GetOutput()->GetPixel(index);
index[0] -= 2;
const PixelRealType valueC = filter->GetOutput()->GetPixel(index);
const PixelRealType derivativeLowerBound = (valueA - valueB) / 2.0;
const PixelRealType derivativeUpperBound = (valueB - valueC) / 2.0;
// Now let's get the first derivative value computed by the filter
filter->SetFirstOrder();
filter->Update();
index[0] = (size[0] - 1) / 2; // the middle pixel
index[0] -= 2;
const PixelRealType derivativeValue = filter->GetOutput()->GetPixel(index);
std::cout << " first derivative normalization... ";
if ((derivativeLowerBound > derivativeValue) || (derivativeUpperBound < derivativeValue))
{
std::cout << "FAILED !" << std::endl;
std::cerr << "The value of the first derivative at index " << index[0] << std::endl;
std::cerr << "is = " << derivativeValue << std::endl;
std::cerr << "which is outside the bounds = [ " << derivativeLowerBound;
std::cerr << " : " << derivativeUpperBound << " ] " << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "PASSED !" << std::endl;
}
// Now do the similar testing between First Derivative and Second
// derivative.
filter->SetFirstOrder();
filter->Update();
index[0] = (size[0] - 1) / 2; // the middle pixel
const PixelRealType value1A = filter->GetOutput()->GetPixel(index);
index[0] -= 2;
const PixelRealType value1B = filter->GetOutput()->GetPixel(index);
index[0] -= 2;
const PixelRealType value1C = filter->GetOutput()->GetPixel(index);
// NOTE that the second derivative in this region is monotonic but decreasing.
const PixelRealType secondDerivativeLowerBound = (value1A - value1B) / 2.0;
const PixelRealType secondDerivativeUpperBound = (value1B - value1C) / 2.0;
// Now let's get the second derivative value computed by the filter
filter->SetSecondOrder();
filter->Update();
index[0] = ((size[0] - 1) / 2) - 2; // where to sample the second derivative
const PixelRealType secondDerivativeValue = filter->GetOutput()->GetPixel(index);
std::cout << " second derivative normalization... ";
if ((secondDerivativeLowerBound > secondDerivativeValue) || (secondDerivativeUpperBound < secondDerivativeValue))
{
std::cout << "FAILED !" << std::endl;
std::cerr << "The value of the second derivative at index " << index[0] << std::endl;
std::cerr << "is = " << secondDerivativeValue << std::endl;
std::cerr << "which is outside the bounds = [ " << secondDerivativeLowerBound;
std::cerr << " : " << secondDerivativeUpperBound << " ] " << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "PASSED !" << std::endl;
}
} // end of test for normalization among derivatives
// Print out all the values for the zero, first and second order
filter->SetNormalizeAcrossScale(false);
filter->SetSigma(2.0);
ImageType::ConstPointer outputImage = filter->GetOutput();
using IteratorType = itk::ImageRegionConstIterator<ImageType>;
IteratorType it(outputImage, outputImage->GetBufferedRegion());
std::cout << std::endl << std::endl;
std::cout << "Smoothed image " << std::endl;
filter->SetZeroOrder();
filter->Update();
it.GoToBegin();
while (!it.IsAtEnd())
{
std::cout << it.Get() << std::endl;
++it;
}
// Now compute the first derivative
std::cout << std::endl << std::endl;
std::cout << "First Derivative " << std::endl;
filter->SetFirstOrder();
filter->Update();
it.GoToBegin();
while (!it.IsAtEnd())
{
std::cout << it.Get() << std::endl;
++it;
}
// Now compute the first derivative
std::cout << std::endl << std::endl;
std::cout << "Second Derivative " << std::endl;
filter->SetSecondOrder();
filter->Update();
it.GoToBegin();
while (!it.IsAtEnd())
{
std::cout << it.Get() << std::endl;
++it;
}
filter->SetSigma(0.0);
ITK_TRY_EXPECT_EXCEPTION(filter->Update());
}
{
std::cout << "Test InPlace filtering using a 1-D image" << std::endl;
using PixelType = float;
using ImageType = itk::Image<PixelType, 1>;
using SizeType = ImageType::SizeType;
using IndexType = ImageType::IndexType;
using RegionType = ImageType::RegionType;
using SpacingType = ImageType::SpacingType;
SizeType size;
size[0] = 21;
IndexType start;
start[0] = 0;
RegionType region;
region.SetIndex(start);
region.SetSize(size);
SpacingType spacing;
spacing[0] = 1.0;
auto inputImage = ImageType::New();
inputImage->SetRegions(region);
inputImage->Allocate();
inputImage->SetSpacing(spacing);
inputImage->FillBuffer(PixelType{});
IndexType index;
index[0] = (size[0] - 1) / 2; // the middle pixel
inputImage->SetPixel(index, static_cast<PixelType>(1.0));
using FilterType = itk::RecursiveGaussianImageFilter<ImageType, ImageType>;
auto filter = FilterType::New();
filter->SetInput(inputImage);
filter->SetSigma(1);
// coverage for set/get methods
filter->SetOrder(itk::GaussianOrderEnum::ZeroOrder);
if (itk::GaussianOrderEnum::ZeroOrder != filter->GetOrder())
{
std::cerr << "SetOrder/GetOrder failure!" << std::endl;
return EXIT_FAILURE;
}
// Check behavior of InPlace
filter->InPlaceOn();
filter->Update();
ImageType::ConstPointer outputImage = filter->GetOutput();
using IteratorType = itk::ImageRegionConstIterator<ImageType>;
IteratorType it(outputImage, outputImage->GetBufferedRegion());
it.GoToBegin();
while (!it.IsAtEnd())
{
std::cout << it.Get() << std::endl;
++it;
}
std::cout << "input buffer region: " << inputImage->GetBufferedRegion() << std::endl;
std::cout << "output buffer region: " << outputImage->GetBufferedRegion() << std::endl;
if (inputImage->GetBufferedRegion().GetNumberOfPixels() != 0)
{
std::cerr << "Failure for filter to run in-place!" << std::endl;
return EXIT_FAILURE;
}
filter->SetSigma(0.0);
ITK_TRY_EXPECT_EXCEPTION(filter->Update());
}
// Test streaming enumeration for RecursiveGaussianImageFilterEnums::GaussianOrder elements
const std::set<itk::RecursiveGaussianImageFilterEnums::GaussianOrder> allGaussianOrder{
itk::RecursiveGaussianImageFilterEnums::GaussianOrder::ZeroOrder,
itk::RecursiveGaussianImageFilterEnums::GaussianOrder::FirstOrder,
itk::RecursiveGaussianImageFilterEnums::GaussianOrder::SecondOrder
};
for (const auto & ee : allGaussianOrder)
{
std::cout << "STREAMED ENUM VALUE RecursiveGaussianImageFilterEnums::GaussianOrder: " << ee << std::endl;
}
// All objects should be automatically destroyed at this point
return EXIT_SUCCESS;
}
|