File: itkRecursiveGaussianImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (550 lines) | stat: -rw-r--r-- 16,999 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
// Disable warning for long symbol names in this file only

#include "itkImage.h"
#include "itkRecursiveGaussianImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageRegionConstIterator.h"
#include "itkTestingMacros.h"

#include <algorithm>
#include <numeric>


int
itkRecursiveGaussianImageFilterTest(int, char *[])
{

  { // 3D test

    // Define the dimension of the images
    constexpr unsigned int myDimension = 3;

    // Declare the types of the images
    using myImageType = itk::Image<float, myDimension>;

    // Declare the type of the index to access images
    using myIndexType = itk::Index<myDimension>;

    // Declare the type of the size
    using mySizeType = itk::Size<myDimension>;

    // Declare the type of the Region
    using myRegionType = itk::ImageRegion<myDimension>;

    // Create the image
    auto inputImage = myImageType::New();


    // Define their size, and start index
    mySizeType size;
    size[0] = 100;
    size[1] = 100;
    size[2] = 100;

    myIndexType start;
    start.Fill(0);

    myRegionType region{ start, size };

    // Initialize Image A
    inputImage->SetRegions(region);
    inputImage->Allocate();

    // Declare Iterator types apropriated for each image
    using myIteratorType = itk::ImageRegionIteratorWithIndex<myImageType>;


    // Create one iterator for the Input Image A (this is a light object)
    myIteratorType it(inputImage, inputImage->GetRequestedRegion());

    // Initialize the content of Image A
    std::cout << "Input Image initialization " << std::endl;
    while (!it.IsAtEnd())
    {
      it.Set(0.0);
      ++it;
    }

    size[0] = 60;
    size[1] = 60;
    size[2] = 60;

    start[0] = 20;
    start[1] = 20;
    start[2] = 20;

    // Create one iterator for an internal region
    region.SetSize(size);
    region.SetIndex(start);
    myIteratorType itb(inputImage, region);

    // Initialize the content the internal region
    while (!itb.IsAtEnd())
    {
      itb.Set(100.0);
      ++itb;
    }

    // Declare the type for the  Gaussian  filter
    using myGaussianFilterType = itk::RecursiveGaussianImageFilter<myImageType, myImageType>;

    // Create a  Filter
    auto filter = myGaussianFilterType::New();

    ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, RecursiveGaussianImageFilter, RecursiveSeparableImageFilter);


    unsigned int direction = 2; // apply along Z
    filter->SetDirection(direction);
    ITK_TEST_SET_GET_VALUE(direction, filter->GetDirection());

    auto order = itk::GaussianOrderEnum::ZeroOrder;
    filter->SetOrder(order);
    ITK_TEST_SET_GET_VALUE(order, filter->GetOrder());

    filter->SetZeroOrder();
    ITK_TEST_SET_GET_VALUE(order, filter->GetOrder());

    // Connect the input images
    filter->SetInput(inputImage);
    ITK_TEST_SET_GET_VALUE(inputImage, filter->GetInput());


    // Execute the filter
    std::cout << "Executing Smoothing filter...";
    filter->Update();
    std::cout << " Done !" << std::endl;


    // Create a  Filter
    auto filter1 = myGaussianFilterType::New();

    filter1->SetDirection(direction);

    order = itk::GaussianOrderEnum::FirstOrder;
    filter1->SetOrder(order);
    ITK_TEST_SET_GET_VALUE(order, filter1->GetOrder());

    filter1->SetFirstOrder();
    ITK_TEST_SET_GET_VALUE(order, filter1->GetOrder());

    // Connect the input images
    filter1->SetInput(inputImage);

    // Execute the filter1
    std::cout << "Executing First Derivative filter...";
    filter1->Update();
    std::cout << " Done !" << std::endl;

    // Create a  Filter
    auto filter2 = myGaussianFilterType::New();

    filter2->SetDirection(direction);

    order = itk::GaussianOrderEnum::SecondOrder;
    filter2->SetOrder(order);
    ITK_TEST_SET_GET_VALUE(order, filter2->GetOrder());

    filter2->SetSecondOrder();
    ITK_TEST_SET_GET_VALUE(order, filter2->GetOrder());

    // Connect the input images
    filter2->SetInput(inputImage);

    // Execute the filter2
    std::cout << "Executing Second Derivative filter...";
    filter2->Update();
    std::cout << " Done !" << std::endl;
  }

  { // Test normalizations factors using a 1D image
    std::cout << "Test normalizations factors using a 1-D image" << std::endl;

    using PixelType = float;
    using ImageType = itk::Image<PixelType, 1>;

    using SizeType = ImageType::SizeType;
    using IndexType = ImageType::IndexType;
    using RegionType = ImageType::RegionType;
    using SpacingType = ImageType::SpacingType;

    using PixelRealType = itk::NumericTraits<PixelType>::RealType;

    SizeType size;
    size[0] = 21;

    IndexType start;
    start[0] = 0;

    RegionType region;
    region.SetIndex(start);
    region.SetSize(size);

    SpacingType spacing;
    spacing[0] = 1.0;

    auto inputImage = ImageType::New();
    inputImage->SetRegions(region);
    inputImage->Allocate();
    inputImage->SetSpacing(spacing);
    inputImage->FillBuffer(PixelType{});

    IndexType index;
    index[0] = (size[0] - 1) / 2; // the middle pixel

    inputImage->SetPixel(index, static_cast<PixelType>(1000.0));

    using FilterType = itk::RecursiveGaussianImageFilter<ImageType, ImageType>;

    auto filter = FilterType::New();

    filter->SetInput(inputImage);

    std::cout << "Testing normalization across scales...  ";
    { // begin of test for normalization across scales

      auto normalizeAcrossScale = true;
      ITK_TEST_SET_GET_BOOLEAN(filter, NormalizeAcrossScale, normalizeAcrossScale);

      constexpr double sigmaA = 2.0;
      filter->SetSigma(sigmaA);
      ITK_TEST_SET_GET_VALUE(sigmaA, filter->GetSigma());

      filter->Update();

      const PixelType valueA = filter->GetOutput()->GetPixel(index);

      normalizeAcrossScale = false;
      filter->SetNormalizeAcrossScale(normalizeAcrossScale);
      constexpr double sigmaB = 2.0;
      filter->SetSigma(sigmaB);

      filter->Update();

      const PixelType valueB = filter->GetOutput()->GetPixel(index);

      // note: for scale space normalization, no scaling should occur
      // The additional scale-space testing is performed in a separate
      // test.
      if (itk::Math::abs(valueB - valueA) > 1e-4)
      {
        std::cout << "FAILED !" << std::endl;
        std::cerr << "Error, Normalization across scales is failing" << std::endl;
        std::cerr << "Central pixel at sigma = " << sigmaA << " = " << valueA << std::endl;
        std::cerr << "Central pixel at sigma = " << sigmaB << " = " << valueB << std::endl;
        return EXIT_FAILURE;
      }
      else
      {
        std::cout << "PASSED !" << std::endl;
      }

    } // end of test for normalization across scales

    std::cout << "Testing normalization...  ";
    { // begin of test for normalization

      filter->SetNormalizeAcrossScale(true);

      // size of image is 21, so a sigma of 2 gives up 5 std-devs and
      // an expected error of >1e-5 due to truncation
      constexpr double sigmaA = 2.0;
      filter->SetSigma(sigmaA);
      filter->Update();

      // the input is an impulse with a value of 1000
      // the resulting convolution should aproximatly sum to the same

      using IteratorType = itk::ImageRegionConstIterator<ImageType>;
      IteratorType it(filter->GetOutput(), filter->GetOutput()->GetBufferedRegion());

      std::vector<double> values;

      while (!it.IsAtEnd())
      {
        values.push_back(it.Get());
        ++it;
      }

      // sort from smallest to largest for best numerical precision
      std::sort(values.begin(), values.end());

      double total = std::accumulate(values.begin(), values.end(), 0.0);

      // 1000.0 is the value of the impulse
      // compute absolute normalized error
      double error = itk::Math::abs(total - 1000.0) / 1000.0;
      if (error > 1e-3)
      {
        std::cout << "FAILED !" << std::endl;
        std::cerr << "Error, Normalization  is failing" << std::endl;
        std::cerr << "Value of impulse is 1000.0" << std::endl;
        std::cerr << "Total value after convolution is " << total << std::endl;
        std::cout << "error: " << error << std::endl;
        return EXIT_FAILURE;
      }
      else
      {
        std::cout << "PASSED !" << std::endl;
      }

    } // end of test for normalization

    std::cout << "Testing derivatives normalization " << std::endl;

    { // begin of test for normalization among derivatives
      filter->SetNormalizeAcrossScale(false);

      // Since one side of the Gaussian is monotonic we can
      // use the middle-value theorem: The value of the derivative at
      // index[0] - 2 must be bounded by the estimation of the derivative
      // at index[0] -1 and index[0] -3. In the following we compute an
      // estimation of derivatives by partial differences at this two
      // positions and use them as bounds for the value of the first order
      // derivative returned by the filter.

      constexpr double sigmaC = 3.0;
      filter->SetSigma(sigmaC);

      filter->SetZeroOrder();
      filter->Update();

      index[0] = (size[0] - 1) / 2; // the middle pixel
      const PixelRealType valueA = filter->GetOutput()->GetPixel(index);

      index[0] -= 2;
      const PixelRealType valueB = filter->GetOutput()->GetPixel(index);

      index[0] -= 2;
      const PixelRealType valueC = filter->GetOutput()->GetPixel(index);

      const PixelRealType derivativeLowerBound = (valueA - valueB) / 2.0;
      const PixelRealType derivativeUpperBound = (valueB - valueC) / 2.0;

      // Now let's get the first derivative value computed by the filter
      filter->SetFirstOrder();
      filter->Update();


      index[0] = (size[0] - 1) / 2; // the middle pixel
      index[0] -= 2;

      const PixelRealType derivativeValue = filter->GetOutput()->GetPixel(index);

      std::cout << "   first derivative normalization...  ";
      if ((derivativeLowerBound > derivativeValue) || (derivativeUpperBound < derivativeValue))
      {
        std::cout << "FAILED !" << std::endl;
        std::cerr << "The value of the first derivative at index " << index[0] << std::endl;
        std::cerr << "is = " << derivativeValue << std::endl;
        std::cerr << "which is outside the bounds = [ " << derivativeLowerBound;
        std::cerr << " : " << derivativeUpperBound << " ] " << std::endl;
        return EXIT_FAILURE;
      }
      else
      {
        std::cout << "PASSED !" << std::endl;
      }


      // Now do the similar testing between First Derivative and Second
      // derivative.
      filter->SetFirstOrder();
      filter->Update();

      index[0] = (size[0] - 1) / 2; // the middle pixel
      const PixelRealType value1A = filter->GetOutput()->GetPixel(index);

      index[0] -= 2;
      const PixelRealType value1B = filter->GetOutput()->GetPixel(index);

      index[0] -= 2;
      const PixelRealType value1C = filter->GetOutput()->GetPixel(index);

      // NOTE that the second derivative in this region is monotonic but decreasing.
      const PixelRealType secondDerivativeLowerBound = (value1A - value1B) / 2.0;
      const PixelRealType secondDerivativeUpperBound = (value1B - value1C) / 2.0;

      // Now let's get the second derivative value computed by the filter
      filter->SetSecondOrder();
      filter->Update();


      index[0] = ((size[0] - 1) / 2) - 2; // where to sample the second derivative

      const PixelRealType secondDerivativeValue = filter->GetOutput()->GetPixel(index);

      std::cout << "   second derivative normalization...  ";
      if ((secondDerivativeLowerBound > secondDerivativeValue) || (secondDerivativeUpperBound < secondDerivativeValue))
      {
        std::cout << "FAILED !" << std::endl;
        std::cerr << "The value of the second derivative at index " << index[0] << std::endl;
        std::cerr << "is = " << secondDerivativeValue << std::endl;
        std::cerr << "which is outside the bounds = [ " << secondDerivativeLowerBound;
        std::cerr << " : " << secondDerivativeUpperBound << " ] " << std::endl;
        return EXIT_FAILURE;
      }
      else
      {
        std::cout << "PASSED !" << std::endl;
      }


    } // end of test for normalization among derivatives

    // Print out all the values for the zero, first and second order
    filter->SetNormalizeAcrossScale(false);
    filter->SetSigma(2.0);

    ImageType::ConstPointer outputImage = filter->GetOutput();
    using IteratorType = itk::ImageRegionConstIterator<ImageType>;
    IteratorType it(outputImage, outputImage->GetBufferedRegion());

    std::cout << std::endl << std::endl;
    std::cout << "Smoothed image " << std::endl;
    filter->SetZeroOrder();
    filter->Update();
    it.GoToBegin();
    while (!it.IsAtEnd())
    {
      std::cout << it.Get() << std::endl;
      ++it;
    }

    // Now compute the first derivative
    std::cout << std::endl << std::endl;
    std::cout << "First Derivative " << std::endl;
    filter->SetFirstOrder();
    filter->Update();
    it.GoToBegin();
    while (!it.IsAtEnd())
    {
      std::cout << it.Get() << std::endl;
      ++it;
    }


    // Now compute the first derivative
    std::cout << std::endl << std::endl;
    std::cout << "Second Derivative " << std::endl;
    filter->SetSecondOrder();
    filter->Update();
    it.GoToBegin();
    while (!it.IsAtEnd())
    {
      std::cout << it.Get() << std::endl;
      ++it;
    }

    filter->SetSigma(0.0);
    ITK_TRY_EXPECT_EXCEPTION(filter->Update());
  }

  {
    std::cout << "Test InPlace filtering using a 1-D image" << std::endl;

    using PixelType = float;
    using ImageType = itk::Image<PixelType, 1>;

    using SizeType = ImageType::SizeType;
    using IndexType = ImageType::IndexType;
    using RegionType = ImageType::RegionType;
    using SpacingType = ImageType::SpacingType;

    SizeType size;
    size[0] = 21;

    IndexType start;
    start[0] = 0;

    RegionType region;
    region.SetIndex(start);
    region.SetSize(size);

    SpacingType spacing;
    spacing[0] = 1.0;

    auto inputImage = ImageType::New();
    inputImage->SetRegions(region);
    inputImage->Allocate();
    inputImage->SetSpacing(spacing);
    inputImage->FillBuffer(PixelType{});

    IndexType index;
    index[0] = (size[0] - 1) / 2; // the middle pixel

    inputImage->SetPixel(index, static_cast<PixelType>(1.0));

    using FilterType = itk::RecursiveGaussianImageFilter<ImageType, ImageType>;
    auto filter = FilterType::New();
    filter->SetInput(inputImage);
    filter->SetSigma(1);

    // coverage for set/get methods
    filter->SetOrder(itk::GaussianOrderEnum::ZeroOrder);
    if (itk::GaussianOrderEnum::ZeroOrder != filter->GetOrder())
    {
      std::cerr << "SetOrder/GetOrder failure!" << std::endl;
      return EXIT_FAILURE;
    }


    // Check behavior of InPlace
    filter->InPlaceOn();
    filter->Update();

    ImageType::ConstPointer outputImage = filter->GetOutput();
    using IteratorType = itk::ImageRegionConstIterator<ImageType>;
    IteratorType it(outputImage, outputImage->GetBufferedRegion());

    it.GoToBegin();
    while (!it.IsAtEnd())
    {
      std::cout << it.Get() << std::endl;
      ++it;
    }

    std::cout << "input buffer region: " << inputImage->GetBufferedRegion() << std::endl;
    std::cout << "output buffer region: " << outputImage->GetBufferedRegion() << std::endl;

    if (inputImage->GetBufferedRegion().GetNumberOfPixels() != 0)
    {
      std::cerr << "Failure for filter to run in-place!" << std::endl;
      return EXIT_FAILURE;
    }

    filter->SetSigma(0.0);
    ITK_TRY_EXPECT_EXCEPTION(filter->Update());
  }

  // Test streaming enumeration for RecursiveGaussianImageFilterEnums::GaussianOrder elements
  const std::set<itk::RecursiveGaussianImageFilterEnums::GaussianOrder> allGaussianOrder{
    itk::RecursiveGaussianImageFilterEnums::GaussianOrder::ZeroOrder,
    itk::RecursiveGaussianImageFilterEnums::GaussianOrder::FirstOrder,
    itk::RecursiveGaussianImageFilterEnums::GaussianOrder::SecondOrder
  };
  for (const auto & ee : allGaussianOrder)
  {
    std::cout << "STREAMED ENUM VALUE RecursiveGaussianImageFilterEnums::GaussianOrder: " << ee << std::endl;
  }

  // All objects should be automatically destroyed at this point
  return EXIT_SUCCESS;
}