1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkSmoothingRecursiveGaussianImageFilter.h"
#include "itkImageFileReader.h"
#include "itkSimpleFilterWatcher.h"
#include "itkImageFileWriter.h"
#include "itkImageRegionConstIterator.h"
#include "itkTestingMacros.h"
namespace
{
template <typename TFilter>
int
InPlaceTest(char * inputFilename, bool normalizeAcrossScale, typename TFilter::SigmaArrayType::ValueType sigmaValue)
{
// Read the input image
using ReaderType = itk::ImageFileReader<typename TFilter::InputImageType>;
auto reader = ReaderType::New();
reader->SetFileName(inputFilename);
// Create the filter
auto filter = TFilter::New();
filter->SetNormalizeAcrossScale(normalizeAcrossScale);
filter->SetSigma(sigmaValue);
filter->SetInput(reader->GetOutput());
if (!filter->CanRunInPlace())
{
std::cerr << "Test failed!" << std::endl;
std::cerr << "Expected the filter to be able to run in-place!" << std::endl;
std::cerr << "Expected itk:SmoothingRecursiveGaussianImageFilter::CanRunInPlace to be true, but got: "
<< filter->CanRunInPlace() << std::endl;
return EXIT_FAILURE;
}
ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());
typename TFilter::OutputImageType::Pointer outputImage1 = filter->GetOutput();
outputImage1->DisconnectPipeline();
// Set the InPlace flag to On
filter->InPlaceOn();
ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());
typename TFilter::OutputImageType::Pointer outputImage2 = filter->GetOutput();
outputImage2->DisconnectPipeline();
using IteratorType = itk::ImageRegionConstIterator<typename TFilter::OutputImageType>;
IteratorType it1(outputImage1, outputImage1->GetBufferedRegion());
IteratorType it2(outputImage2, outputImage2->GetBufferedRegion());
// Check whether the values of the in-place and not in-place executions are the same
it1.GoToBegin();
it2.GoToBegin();
double epsilon = itk::NumericTraits<double>::epsilon();
while (!it1.IsAtEnd())
{
if (!itk::Math::FloatAlmostEqual(static_cast<double>(it1.Get()), static_cast<double>(it2.Get()), 10, epsilon))
{
std::cerr.precision(static_cast<int>(itk::Math::abs(std::log10(epsilon))));
std::cerr << "Test failed!" << std::endl;
std::cerr << "Error in pixel value at index [" << std::endl;
std::cerr << "Error in pixel value at index [" << it1.GetIndex() << ']' << std::endl;
std::cerr << "Expected value " << it1.Get() << std::endl;
std::cerr << " differs from " << it2.Get();
std::cerr << " by more than " << epsilon << std::endl;
return EXIT_FAILURE;
}
++it1;
++it2;
}
return EXIT_SUCCESS;
}
} // namespace
int
itkSmoothingRecursiveGaussianImageFilterTest(int argc, char * argv[])
{
if (argc != 5)
{
std::cerr << "Missing parameters." << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << itkNameOfTestExecutableMacro(argv) << " inputImageFile outputImageFile normalizeAcrossScale sigma"
<< std::endl;
return EXIT_FAILURE;
}
int testStatus = EXIT_SUCCESS;
// Define the dimension of the images
constexpr unsigned int Dimension = 2;
// Declare the types of the images
using PixelType = unsigned char;
using ImageType = itk::Image<PixelType, Dimension>;
// Read the input image
using ReaderType = itk::ImageFileReader<ImageType>;
auto reader = ReaderType::New();
reader->SetFileName(argv[1]);
// Declare the type for the itk::SmoothingRecursiveGaussianImageFilter
using SmoothingRecursiveGaussianImageFilterType = itk::SmoothingRecursiveGaussianImageFilter<ImageType>;
// Create the filter
auto filter = SmoothingRecursiveGaussianImageFilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, SmoothingRecursiveGaussianImageFilter, InPlaceImageFilter);
itk::SimpleFilterWatcher watcher(filter);
// Set the scale normalization flag
bool normalizeAcrossScale = std::stoi(argv[3]);
ITK_TEST_SET_GET_BOOLEAN(filter, NormalizeAcrossScale, normalizeAcrossScale);
// Set the value of the standard deviation of the Gaussian used for smoothing
SmoothingRecursiveGaussianImageFilterType::SigmaArrayType::ValueType sigmaValue = std::stod(argv[4]);
SmoothingRecursiveGaussianImageFilterType::SigmaArrayType sigma;
sigma.Fill(sigmaValue);
filter->SetSigma(sigmaValue);
ITK_TEST_SET_GET_VALUE(sigmaValue, filter->GetSigma());
filter->SetSigmaArray(sigma);
ITK_TEST_SET_GET_VALUE(sigma, filter->GetSigmaArray());
// Set the input image
filter->SetInput(reader->GetOutput());
// Run the filter
ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());
// Write the output
using WriterType = itk::ImageFileWriter<ImageType>;
auto writer = WriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(filter->GetOutput());
ITK_TRY_EXPECT_NO_EXCEPTION(writer->Update());
// Test the InPlaceOn option output
if (InPlaceTest<SmoothingRecursiveGaussianImageFilterType>(argv[1], normalizeAcrossScale, sigmaValue) == EXIT_FAILURE)
{
testStatus = EXIT_FAILURE;
}
// All objects should be automatically destroyed at this point
std::cout << "Test finished." << std::endl;
return testStatus;
}
|