File: itkOtsuMultipleThresholdsImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (170 lines) | stat: -rw-r--r-- 6,578 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkOtsuMultipleThresholdsImageFilter_h
#define itkOtsuMultipleThresholdsImageFilter_h

#include "itkImageToImageFilter.h"
#include "itkFixedArray.h"
#include "itkOtsuMultipleThresholdsCalculator.h"
#include "itkScalarImageToHistogramGenerator.h"

namespace itk
{
/**
 * \class OtsuMultipleThresholdsImageFilter
 * \brief Threshold an image using multiple Otsu Thresholds.
 *
 * This filter creates a labeled image that separates the input
 * image into various classes. The filter
 * computes the thresholds using the OtsuMultipleThresholdsCalculator and
 * applies those thresholds to the input image using the
 * ThresholdLabelerImageFilter. The NumberOfHistogramBins and
 * NumberOfThresholds can be set
 * for the Calculator. The LabelOffset can be set
 * for the ThresholdLabelerImageFilter.
 *
 * This filter also includes an option to use the valley emphasis algorithm from
 * H.F. Ng, "Automatic thresholding for defect detection", Pattern Recognition Letters, (27): 1644-1649, 2006.
 * The valley emphasis algorithm is particularly effective when the object to be thresholded is small.
 * See the following tests for examples:
 * itkOtsuMultipleThresholdsImageFilterTest3 and itkOtsuMultipleThresholdsImageFilterTest4
 * To use this algorithm, simple call the setter: SetValleyEmphasis(true)
 * It is turned off by default.
 *
 * \sa ScalarImageToHistogramGenerator
 * \sa OtsuMultipleThresholdsCalculator
 * \sa ThresholdLabelerImageFilter
 * \ingroup IntensityImageFilters  MultiThreaded
 * \ingroup ITKThresholding
 *
 * \sphinx
 * \sphinxexample{Filtering/Thresholding/ThresholdAnImageUsingOtsu,Threshold An Image Using Otsu}
 * \endsphinx
 */

template <typename TInputImage, typename TOutputImage>
class ITK_TEMPLATE_EXPORT OtsuMultipleThresholdsImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(OtsuMultipleThresholdsImageFilter);

  /** Standard Self type alias */
  using Self = OtsuMultipleThresholdsImageFilter;
  using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(OtsuMultipleThresholdsImageFilter);

  /** Image pixel value type alias. */
  using InputPixelType = typename TInputImage::PixelType;
  using OutputPixelType = typename TOutputImage::PixelType;

  /** Image related type alias. */
  using InputImagePointer = typename TInputImage::Pointer;
  using OutputImagePointer = typename TOutputImage::Pointer;

  using InputSizeType = typename TInputImage::SizeType;
  using InputIndexType = typename TInputImage::IndexType;
  using InputImageRegionType = typename TInputImage::RegionType;
  using OutputSizeType = typename TOutputImage::SizeType;
  using OutputIndexType = typename TOutputImage::IndexType;
  using OutputImageRegionType = typename TOutputImage::RegionType;

  /** Threshold vector types. */
  using HistogramGeneratorType = itk::Statistics::ScalarImageToHistogramGenerator<TInputImage>;
  using HistogramType = typename HistogramGeneratorType::HistogramType;
  using OtsuCalculatorType = OtsuMultipleThresholdsCalculator<HistogramType>;
  using ThresholdVectorType = typename OtsuCalculatorType::OutputType;

  /** Image related type alias. */
  static constexpr unsigned int InputImageDimension = TInputImage::ImageDimension;
  static constexpr unsigned int OutputImageDimension = TOutputImage::ImageDimension;

  /** Set/Get the number of histogram bins. Default is 128. */
  itkSetClampMacro(NumberOfHistogramBins, SizeValueType, 1, NumericTraits<SizeValueType>::max());
  itkGetConstMacro(NumberOfHistogramBins, SizeValueType);

  /** Set/Get the number of thresholds. Default is 1. */
  itkSetClampMacro(NumberOfThresholds, SizeValueType, 1, NumericTraits<SizeValueType>::max());
  itkGetConstMacro(NumberOfThresholds, SizeValueType);

  /** Set/Get the offset which labels have to start from. Default is 0. */
  itkSetClampMacro(LabelOffset, OutputPixelType, OutputPixelType{}, NumericTraits<OutputPixelType>::max());
  itkGetConstMacro(LabelOffset, OutputPixelType);

  /** Set/Get the use of valley emphasis. Default is false. */
  itkSetMacro(ValleyEmphasis, bool);
  itkGetConstReferenceMacro(ValleyEmphasis, bool);
  itkBooleanMacro(ValleyEmphasis);

  /** Should the threshold value be mid-point of the bin or the maximum?
   * Default is to return bin maximum. */
  itkSetMacro(ReturnBinMidpoint, bool);
  itkGetConstReferenceMacro(ReturnBinMidpoint, bool);
  itkBooleanMacro(ReturnBinMidpoint);

  /** Get the computed threshold. */
  const ThresholdVectorType &
  GetThresholds() const
  {
    return m_Thresholds;
  }

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  itkConceptMacro(OutputComparableCheck, (Concept::Comparable<OutputPixelType>));
  itkConceptMacro(OutputOStreamWritableCheck, (Concept::OStreamWritable<OutputPixelType>));
  // End concept checking
#endif

protected:
  OtsuMultipleThresholdsImageFilter();
  ~OtsuMultipleThresholdsImageFilter() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  void
  GenerateInputRequestedRegion() override;

  void
  GenerateData() override;

private:
  SizeValueType       m_NumberOfHistogramBins{ 128 };
  SizeValueType       m_NumberOfThresholds{ 1 };
  OutputPixelType     m_LabelOffset{};
  ThresholdVectorType m_Thresholds{};
  bool                m_ValleyEmphasis{ false };
#if defined(ITKV4_COMPATIBILITY)
  bool m_ReturnBinMidpoint{ true };
#else
  bool m_ReturnBinMidpoint{ false };
#endif
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkOtsuMultipleThresholdsImageFilter.hxx"
#endif

#endif