1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkThresholdLabelerImageFilter_h
#define itkThresholdLabelerImageFilter_h
#include "itkUnaryFunctorImageFilter.h"
#include "itkConceptChecking.h"
namespace itk
{
/**
* \class ThresholdLabelerImageFilter
*
* \brief Label an input image according to a set of thresholds.
*
* This filter produces an output image whose pixels are labeled
* progressively according to the classes identified by a set of thresholds.
* Values equal to a threshold is considered to be in the lower class.
*
* This filter is templated over the input image type
* and the output image type.
*
* The filter expect both images to have the same number of dimensions.
*
* \ingroup IntensityImageFilters MultiThreaded
* \ingroup ITKThresholding
*/
namespace Functor
{
template <typename TInput, typename TOutput>
class ITK_TEMPLATE_EXPORT ThresholdLabeler
{
public:
ThresholdLabeler() { m_LabelOffset = NumericTraits<TOutput>::OneValue(); }
~ThresholdLabeler() = default;
using RealThresholdType = typename NumericTraits<TInput>::RealType;
using RealThresholdVector = std::vector<RealThresholdType>;
/** Set the vector of thresholds. */
void
SetThresholds(const RealThresholdVector & thresholds)
{
m_Thresholds = thresholds;
}
/** Set the offset which labels have to start from. */
void
SetLabelOffset(const TOutput & labelOffset)
{
m_LabelOffset = labelOffset;
}
bool
operator==(const ThresholdLabeler & other) const
{
return m_Thresholds == other.m_Thresholds && m_LabelOffset == other.m_LabelOffset;
}
ITK_UNEQUAL_OPERATOR_MEMBER_FUNCTION(ThresholdLabeler);
inline TOutput
operator()(const TInput & A) const
{
// When there are N thresholds, they divide values into N+1 buckets, which we number
// 0, ..., N. Each bucket represents a half-open interval of values (A, B]. The
// variables low, mid, and high refer to buckets. The inclusive range [low, high]
// are the buckets that are not yet ruled out. We repeatedly bisect this range
// using the variable `mid`. In the case of ties, this method returns the lowest
// bucket index for which `A` is less than or equal to the bucket's upper limit.
size_t low = 0;
size_t high = m_Thresholds.size();
while (low < high)
{
const size_t mid = (low + high) / 2;
if (A <= m_Thresholds[mid])
{
high = mid;
}
else
{
low = mid + 1;
}
}
// The computed bucket index is relative to m_LabelOffset.
return static_cast<TOutput>(low) + m_LabelOffset;
}
private:
RealThresholdVector m_Thresholds;
TOutput m_LabelOffset;
};
} // namespace Functor
template <typename TInputImage, typename TOutputImage>
class ITK_TEMPLATE_EXPORT ThresholdLabelerImageFilter
: public UnaryFunctorImageFilter<
TInputImage,
TOutputImage,
Functor::ThresholdLabeler<typename TInputImage::PixelType, typename TOutputImage::PixelType>>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(ThresholdLabelerImageFilter);
/** Standard class type aliases. */
using Self = ThresholdLabelerImageFilter;
using Superclass = UnaryFunctorImageFilter<
TInputImage,
TOutputImage,
Functor::ThresholdLabeler<typename TInputImage::PixelType, typename TOutputImage::PixelType>>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ThresholdLabelerImageFilter);
/** Pixel types. */
using InputPixelType = typename TInputImage::PixelType;
using OutputPixelType = typename TOutputImage::PixelType;
/** Threshold vector types. */
using ThresholdVector = std::vector<InputPixelType>;
using RealThresholdType = typename NumericTraits<InputPixelType>::RealType;
using RealThresholdVector = std::vector<RealThresholdType>;
/** The input and output pixel types must support comparison operators. */
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(PixelTypeComparable, (Concept::Comparable<InputPixelType>));
itkConceptMacro(OutputPixelTypeComparable, (Concept::Comparable<OutputPixelType>));
itkConceptMacro(OutputPixelTypeOStreamWritable, (Concept::OStreamWritable<OutputPixelType>));
// End concept checking
#endif
/** Set the vector of thresholds. */
void
SetThresholds(const ThresholdVector & thresholds)
{
m_Thresholds = thresholds;
m_RealThresholds.clear();
typename ThresholdVector::const_iterator itr = m_Thresholds.begin();
while (itr != m_Thresholds.end())
{
m_RealThresholds.push_back(static_cast<RealThresholdType>(*itr));
++itr;
}
this->Modified();
}
/** Get the vector of thresholds. */
const ThresholdVector &
GetThresholds() const
{
return m_Thresholds;
}
/** Set the vector of real type thresholds. */
void
SetRealThresholds(const RealThresholdVector & thresholds)
{
m_RealThresholds = thresholds;
m_Thresholds.clear();
typename RealThresholdVector::const_iterator itr = m_RealThresholds.begin();
while (itr != m_RealThresholds.end())
{
m_Thresholds.push_back(static_cast<InputPixelType>(*itr));
++itr;
}
this->Modified();
}
/** Get the vector of real thresholds. */
const RealThresholdVector &
GetRealThresholds() const
{
return m_RealThresholds;
}
/** Set the offset which labels have to start from. */
itkSetClampMacro(LabelOffset, OutputPixelType, OutputPixelType{}, NumericTraits<OutputPixelType>::max());
itkGetConstMacro(LabelOffset, OutputPixelType);
protected:
ThresholdLabelerImageFilter();
~ThresholdLabelerImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** This method is used to set the state of the filter before
* multi-threading. */
void
BeforeThreadedGenerateData() override;
private:
ThresholdVector m_Thresholds{};
RealThresholdVector m_RealThresholds{};
OutputPixelType m_LabelOffset{};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkThresholdLabelerImageFilter.hxx"
#endif
#endif
|