1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkFEMElement3DMembrane_h
#define itkFEMElement3DMembrane_h
#include "itkFEMElementBase.h"
#include "itkFEMMaterialLinearElasticity.h"
namespace itk
{
namespace fem
{
/**
* \class Element3DMembrane
* \brief Class that is used to define a membrane energy problem in 3D space.
*
* This class only defines the physics of the problem. Use his class together
* with element classes that specify the geometry to fully define the element.
*
* A membrane element in three dimensional is an isotropic homogeneous
* element through a small thickness. The elements have three translational
* degrees of freedom at each node.
*
*
* You can specify one template parameter:
*
* TBaseClass - Class from which Element3DMembrane is derived. TBaseClass must
* be derived from the Element base class. This enables you
* to use this class at any level of element definition.
* If not specified, it defaults to the Element base class.
* \ingroup ITKFEM
*/
template <typename TBaseClass = Element>
class ITK_TEMPLATE_EXPORT Element3DMembrane : public TBaseClass
{
public:
/** Standard class type aliases. */
using Self = Element3DMembrane;
using Superclass = TBaseClass;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(Element3DMembrane);
// Repeat the required type alias and enums from parent class
using typename Superclass::Float;
using typename Superclass::MatrixType;
using typename Superclass::VectorType;
/**
* Default constructor only clears the internal storage
*/
Element3DMembrane();
// ////////////////////////////////////////////////////////////////////////
/**
* Methods related to the physics of the problem.
*/
/**
* Compute the B matrix.
*/
void
GetStrainDisplacementMatrix(MatrixType & B, const MatrixType & shapeDgl) const override;
/**
* Compute the D matrix.
*/
void
GetMaterialMatrix(MatrixType & D) const override;
/**
* Compute the mass matrix specific for 3D membrane problems.
*/
void
GetMassMatrix(MatrixType & Me) const override;
/**
* 3D membrane elements have 3 DOFs per node.
*/
unsigned int
GetNumberOfDegreesOfFreedomPerNode() const override
{
return 3;
}
/**
* Get/Set the material properties for the element
*/
Material::ConstPointer
GetMaterial() const override
{
return dynamic_cast<const Material *>(m_mat);
}
void
SetMaterial(Material::ConstPointer mat_) override
{
m_mat = dynamic_cast<const MaterialLinearElasticity *>(mat_.GetPointer());
}
protected:
void
PrintSelf(std::ostream & os, Indent indent) const override;
/**
* Pointer to material properties of the element
*/
const MaterialLinearElasticity * m_mat{ nullptr };
}; // class Element3DMembrane
} // end namespace fem
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkFEMElement3DMembrane.hxx"
#endif
#endif // itkFEMElement3DMembrane_h
|