File: itkFEMImageMetricLoad.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (388 lines) | stat: -rw-r--r-- 12,144 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkFEMImageMetricLoad_h
#define itkFEMImageMetricLoad_h

#include "itkFEMLoadElementBase.h"

#include "itkImage.h"
#include "itkTranslationTransform.h"

#include "itkImageRegionIteratorWithIndex.h"
#include "itkNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkDerivativeOperator.h"
#include "itkForwardDifferenceOperator.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkMath.h"

#include <itkMutualInformationImageToImageMetric.h>
#include <itkMattesMutualInformationImageToImageMetric.h>
#include <itkMeanSquaresImageToImageMetric.h>
#include <itkNormalizedCorrelationImageToImageMetric.h>

namespace itk
{
namespace fem
{
/**
 * \class ImageMetricLoad
 * \brief General image pair load that uses the itkImageToImageMetrics.
 *
 * LoadImageMetric computes FEM gravity loads by using derivatives provided
 * by itkImageToImageMetrics (e.g. mean squares intensity difference.)
 * The function responsible for this is called Fg, as required by the FEMLoad
 * standards.  It takes a vnl_vector as input.
 * We assume the vector input is of size 2*ImageDimension.
 * The 0 to ImageDimension-1 elements contain the position, p,
 * in the reference (moving) image.  The next ImageDimension to 2*ImageDimension-1
 * elements contain the value of the vector field at that point, v(p).
 *
 * Then, we evaluate the derivative at the point p+v(p) with respect to
 * some region of the target (fixed) image by calling the metric with
 * the translation parameters as provided by the vector field at p.
 * The metrics return both a scalar similarity value and vector-valued derivative.
 * The derivative is what gives us the force to drive the FEM registration.
 * These values are computed with respect to some region in the Fixed image.
 * This region size may be set by the user by calling SetMetricRadius.
 * As the metric derivative computation evolves, performance should improve
 * and more functionality will be available (such as scale selection).
 * \ingroup ITKFEM
 */
template <typename TMoving, typename TFixed>
class ITK_TEMPLATE_EXPORT ImageMetricLoad : public LoadElement
{
public:
  /** Standard class type aliases. */
  using Self = ImageMetricLoad;
  using Superclass = LoadElement;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkSimpleNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(ImageMetricLoad);

  /** CreateAnother method will clone the existing instance of this type,
   * including its internal member variables. */
  itk::LightObject::Pointer
  CreateAnother() const override;

  // Necessary type alias for dealing with images BEGIN
  using Float = typename LoadElement::Float;

  using MovingType = TMoving;
  using MovingConstPointer = typename MovingType::ConstPointer;
  using MovingPointer = MovingType *;
  using FixedType = TFixed;
  using FixedPointer = FixedType *;
  using FixedConstPointer = typename FixedType::ConstPointer;

  /** Dimensionality of input and output data is assumed to be the same. */
  static constexpr unsigned int ImageDimension = MovingType::ImageDimension;

  using RefRegionIteratorType = ImageRegionIteratorWithIndex<MovingType>;
  using TarRegionIteratorType = ImageRegionIteratorWithIndex<FixedType>;

  using MovingNeighborhoodIteratorType = NeighborhoodIterator<MovingType>;
  using MovingNeighborhoodIndexType = typename MovingNeighborhoodIteratorType::IndexType;
  using MovingRadiusType = typename MovingNeighborhoodIteratorType::RadiusType;
  using FixedNeighborhoodIteratorType = NeighborhoodIterator<FixedType>;
  using FixedNeighborhoodIndexType = typename FixedNeighborhoodIteratorType::IndexType;
  using FixedRadiusType = typename FixedNeighborhoodIteratorType::RadiusType;

  // IMAGE DATA
  using RefPixelType = typename MovingType::PixelType;
  using TarPixelType = typename FixedType::PixelType;
  using PixelType = Float;
  using ComputationType = Float;
  using RefImageType = Image<RefPixelType, Self::ImageDimension>;
  using TarImageType = Image<TarPixelType, Self::ImageDimension>;
  using ImageType = Image<PixelType, Self::ImageDimension>;
  using VectorType = vnl_vector<Float>;

  // Necessary type alias for dealing with images END

  // ------------------------------------------------------------
  // Set up the metrics
  // ------------------------------------------------------------
  using CoordinateRepresentationType = double;
  using TransformBaseType = Transform<CoordinateRepresentationType, Self::ImageDimension, Self::ImageDimension>;
  using DefaultTransformType = TranslationTransform<CoordinateRepresentationType, Self::ImageDimension>;

  /**  Type of supported metrics. */
  using MetricBaseType = ImageToImageMetric<FixedType, MovingType>;
  using MetricBaseTypePointer = typename MetricBaseType::Pointer;

  using MutualInformationMetricType = MutualInformationImageToImageMetric<MovingType, FixedType>;

  using MeanSquaresMetricType = MeanSquaresImageToImageMetric<MovingType, FixedType>;

  using NormalizedCorrelationMetricType = NormalizedCorrelationImageToImageMetric<MovingType, FixedType>;

  using DefaultMetricType = MeanSquaresMetricType;
  using ParametersType = typename DefaultTransformType::ParametersType;
  using JacobianType = typename DefaultTransformType::JacobianType;

  using ElementIdentifier = unsigned long;
  using ElementContainerType = VectorContainer<ElementIdentifier, Element::Pointer>;
  // ------------------------------------------------------------
  // Set up an Interpolator
  // ------------------------------------------------------------
  using InterpolatorType = LinearInterpolateImageFunction<MovingType, double>;

  /** Gradient filtering */
  using RealType = float;
  using GradientPixelType = CovariantVector<RealType, Self::ImageDimension>;
  using GradientImageType = Image<GradientPixelType, Self::ImageDimension>;
  using GradientImagePointer = SmartPointer<GradientImageType>;
  using GradientImageFilterType = GradientRecursiveGaussianImageFilter<ImageType, GradientImageType>;
  // using GradientImageFilterPointer = typename GradientImageFilterType::Pointer;

  // FUNCTIONS

  /** Set/Get the Metric.  */
  void
  SetMetric(MetricBaseTypePointer MP)
  {
    m_Metric = MP;
  }

  /** Define the reference (moving) image. */
  void
  SetMovingImage(MovingType * R)
  {
    m_RefImage = R;
    m_RefSize = m_RefImage->GetLargestPossibleRegion().GetSize();
  }

  void
  SetMetricMovingImage(MovingType * R)
  {
    m_Metric->SetMovingImage(R);
    m_RefSize = R->GetLargestPossibleRegion().GetSize();
  }

  /** Define the target (fixed) image. */
  void
  SetFixedImage(FixedType * T)
  {
    m_TarImage = T;
    m_TarSize = T->GetLargestPossibleRegion().GetSize();
  }

  void
  SetMetricFixedImage(FixedType * T)
  {
    m_Metric->SetFixedImage(T);
    m_TarSize = T->GetLargestPossibleRegion().GetSize();
  }

  MovingPointer
  GetMovingImage()
  {
    return m_RefImage;
  }
  FixedPointer
  GetFixedImage()
  {
    return m_TarImage;
  }

  /** Define the metric region size. */
  void
  SetMetricRadius(MovingRadiusType T)
  {
    m_MetricRadius = T;
  }
  /** Get the metric region size. */
  MovingRadiusType
  GetMetricRadius()
  {
    return m_MetricRadius;
  }

  /** Set/Get methods for the number of integration points to use
   * in each 1-dimensional line integral when evaluating the load.
   * This value is passed to the load implementation.
   */
  void
  SetNumberOfIntegrationPoints(unsigned int i)
  {
    m_NumberOfIntegrationPoints = i;
  }
  unsigned int
  GetNumberOfIntegrationPoints()
  {
    return m_NumberOfIntegrationPoints;
  }

  /** Set the direction of the gradient (uphill or downhill).
   * E.g. the mean squares metric should be minimized while NCC and PR should be maximized.
   */
  void
  SetSign(Float s)
  {
    m_Sign = s;
  }

  /** Set the sigma in a gaussian measure. */
  void
  SetTemp(Float s)
  {
    m_Temp = s;
  }

  /** Scaling of the similarity energy term */
  void
  SetGamma(Float s)
  {
    m_Gamma = s;
  }

  /** Set the pointer to the solution vector.
   * \param ptr Pointer to the object of Solution class.
   */
  void
  SetSolution(Solution::ConstPointer ptr) override
  {
    m_Solution = ptr;
  }
  /** Get the pointer to the solution vector.
   * \return Pointer to the object of Solution class.
   */
  Solution::ConstPointer
  GetSolution() override
  {
    return m_Solution;
  }

  /**
   *  This method returns the total metric evaluated over the image with respect to the current solution.
   */
  Float
  GetMetric(VectorType InVec);

  VectorType
  GetPolynomialFitToMetric(VectorType PositionInElement, VectorType SolutionAtPosition);

  VectorType
  MetricFiniteDiff(VectorType PositionInElement, VectorType SolutionAtPosition);

  // FIXME - WE ASSUME THE 2ND VECTOR (INDEX 1) HAS THE INFORMATION WE WANT
  Float
  GetSolution(unsigned int i, unsigned int which = 0)
  {
    return m_Solution->GetSolutionValue(i, which);
  }

  // define the copy constructor
  //  ImageMetricLoad(const ImageMetricLoad& LMS);

  void
  InitializeMetric();

  ImageMetricLoad(); // cannot be private until we always use smart pointers
  Float
  EvaluateMetricGivenSolution(Element::ArrayType * el, Float step = 1.0);

  Float
  EvaluateMetricGivenSolution1(Element::ArrayType * el, Float step = 1.0);

  /**
   * Compute the image based load - implemented with ITK metric derivatives.
   */
  VectorType Fe(VectorType, VectorType);

  static Baseclass *
  NewImageMetricLoad()
  {
    return new ImageMetricLoad;
  }

  /** Set/Get the metric gradient image */
  // void InitializeGradientImage();
  void
  SetMetricGradientImage(GradientImageType * g)
  {
    m_MetricGradientImage = g;
  }
  GradientImageType *
  GetMetricGradientImage()
  {
    return m_MetricGradientImage;
  }

  void
  PrintCurrentEnergy()
  {
    std::cout << " energy " << m_Energy << std::endl;
  }
  double
  GetCurrentEnergy()
  {
    return m_Energy;
  }
  void
  SetCurrentEnergy(double e)
  {
    m_Energy = e;
  }

  // FIXME - Documentation
  void
  ApplyLoad(Element::ConstPointer element, Element::VectorType & Fe) override;

protected:
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

private:
  GradientImageType * m_MetricGradientImage{};
  MovingPointer       m_RefImage{};
  FixedPointer        m_TarImage{};
  MovingRadiusType    m_MetricRadius{}; /** used by the metric to set
                                        region size for fixed image*/
  typename MovingType::SizeType m_RefSize{};
  typename FixedType::SizeType  m_TarSize{};
  unsigned int                  m_NumberOfIntegrationPoints{};
  unsigned int                  m_SolutionIndex{};
  unsigned int                  m_SolutionIndex2{};
  Float                         m_Sign{};
  Float                         m_Temp{};
  Float                         m_Gamma{};

  typename Solution::ConstPointer     m_Solution{};
  MetricBaseTypePointer               m_Metric{};
  typename TransformBaseType::Pointer m_Transform{};
  typename InterpolatorType::Pointer  m_Interpolator{};

  mutable double m_Energy{};

private:
};
} // end namespace fem
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkFEMImageMetricLoad.hxx"
#endif

#endif // itkFEMImageMetricLoad_h