1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkFEMImageMetricLoad_h
#define itkFEMImageMetricLoad_h
#include "itkFEMLoadElementBase.h"
#include "itkImage.h"
#include "itkTranslationTransform.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkDerivativeOperator.h"
#include "itkForwardDifferenceOperator.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkMath.h"
#include <itkMutualInformationImageToImageMetric.h>
#include <itkMattesMutualInformationImageToImageMetric.h>
#include <itkMeanSquaresImageToImageMetric.h>
#include <itkNormalizedCorrelationImageToImageMetric.h>
namespace itk
{
namespace fem
{
/**
* \class ImageMetricLoad
* \brief General image pair load that uses the itkImageToImageMetrics.
*
* LoadImageMetric computes FEM gravity loads by using derivatives provided
* by itkImageToImageMetrics (e.g. mean squares intensity difference.)
* The function responsible for this is called Fg, as required by the FEMLoad
* standards. It takes a vnl_vector as input.
* We assume the vector input is of size 2*ImageDimension.
* The 0 to ImageDimension-1 elements contain the position, p,
* in the reference (moving) image. The next ImageDimension to 2*ImageDimension-1
* elements contain the value of the vector field at that point, v(p).
*
* Then, we evaluate the derivative at the point p+v(p) with respect to
* some region of the target (fixed) image by calling the metric with
* the translation parameters as provided by the vector field at p.
* The metrics return both a scalar similarity value and vector-valued derivative.
* The derivative is what gives us the force to drive the FEM registration.
* These values are computed with respect to some region in the Fixed image.
* This region size may be set by the user by calling SetMetricRadius.
* As the metric derivative computation evolves, performance should improve
* and more functionality will be available (such as scale selection).
* \ingroup ITKFEM
*/
template <typename TMoving, typename TFixed>
class ITK_TEMPLATE_EXPORT ImageMetricLoad : public LoadElement
{
public:
/** Standard class type aliases. */
using Self = ImageMetricLoad;
using Superclass = LoadElement;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkSimpleNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ImageMetricLoad);
/** CreateAnother method will clone the existing instance of this type,
* including its internal member variables. */
itk::LightObject::Pointer
CreateAnother() const override;
// Necessary type alias for dealing with images BEGIN
using Float = typename LoadElement::Float;
using MovingType = TMoving;
using MovingConstPointer = typename MovingType::ConstPointer;
using MovingPointer = MovingType *;
using FixedType = TFixed;
using FixedPointer = FixedType *;
using FixedConstPointer = typename FixedType::ConstPointer;
/** Dimensionality of input and output data is assumed to be the same. */
static constexpr unsigned int ImageDimension = MovingType::ImageDimension;
using RefRegionIteratorType = ImageRegionIteratorWithIndex<MovingType>;
using TarRegionIteratorType = ImageRegionIteratorWithIndex<FixedType>;
using MovingNeighborhoodIteratorType = NeighborhoodIterator<MovingType>;
using MovingNeighborhoodIndexType = typename MovingNeighborhoodIteratorType::IndexType;
using MovingRadiusType = typename MovingNeighborhoodIteratorType::RadiusType;
using FixedNeighborhoodIteratorType = NeighborhoodIterator<FixedType>;
using FixedNeighborhoodIndexType = typename FixedNeighborhoodIteratorType::IndexType;
using FixedRadiusType = typename FixedNeighborhoodIteratorType::RadiusType;
// IMAGE DATA
using RefPixelType = typename MovingType::PixelType;
using TarPixelType = typename FixedType::PixelType;
using PixelType = Float;
using ComputationType = Float;
using RefImageType = Image<RefPixelType, Self::ImageDimension>;
using TarImageType = Image<TarPixelType, Self::ImageDimension>;
using ImageType = Image<PixelType, Self::ImageDimension>;
using VectorType = vnl_vector<Float>;
// Necessary type alias for dealing with images END
// ------------------------------------------------------------
// Set up the metrics
// ------------------------------------------------------------
using CoordinateRepresentationType = double;
using TransformBaseType = Transform<CoordinateRepresentationType, Self::ImageDimension, Self::ImageDimension>;
using DefaultTransformType = TranslationTransform<CoordinateRepresentationType, Self::ImageDimension>;
/** Type of supported metrics. */
using MetricBaseType = ImageToImageMetric<FixedType, MovingType>;
using MetricBaseTypePointer = typename MetricBaseType::Pointer;
using MutualInformationMetricType = MutualInformationImageToImageMetric<MovingType, FixedType>;
using MeanSquaresMetricType = MeanSquaresImageToImageMetric<MovingType, FixedType>;
using NormalizedCorrelationMetricType = NormalizedCorrelationImageToImageMetric<MovingType, FixedType>;
using DefaultMetricType = MeanSquaresMetricType;
using ParametersType = typename DefaultTransformType::ParametersType;
using JacobianType = typename DefaultTransformType::JacobianType;
using ElementIdentifier = unsigned long;
using ElementContainerType = VectorContainer<ElementIdentifier, Element::Pointer>;
// ------------------------------------------------------------
// Set up an Interpolator
// ------------------------------------------------------------
using InterpolatorType = LinearInterpolateImageFunction<MovingType, double>;
/** Gradient filtering */
using RealType = float;
using GradientPixelType = CovariantVector<RealType, Self::ImageDimension>;
using GradientImageType = Image<GradientPixelType, Self::ImageDimension>;
using GradientImagePointer = SmartPointer<GradientImageType>;
using GradientImageFilterType = GradientRecursiveGaussianImageFilter<ImageType, GradientImageType>;
// using GradientImageFilterPointer = typename GradientImageFilterType::Pointer;
// FUNCTIONS
/** Set/Get the Metric. */
void
SetMetric(MetricBaseTypePointer MP)
{
m_Metric = MP;
}
/** Define the reference (moving) image. */
void
SetMovingImage(MovingType * R)
{
m_RefImage = R;
m_RefSize = m_RefImage->GetLargestPossibleRegion().GetSize();
}
void
SetMetricMovingImage(MovingType * R)
{
m_Metric->SetMovingImage(R);
m_RefSize = R->GetLargestPossibleRegion().GetSize();
}
/** Define the target (fixed) image. */
void
SetFixedImage(FixedType * T)
{
m_TarImage = T;
m_TarSize = T->GetLargestPossibleRegion().GetSize();
}
void
SetMetricFixedImage(FixedType * T)
{
m_Metric->SetFixedImage(T);
m_TarSize = T->GetLargestPossibleRegion().GetSize();
}
MovingPointer
GetMovingImage()
{
return m_RefImage;
}
FixedPointer
GetFixedImage()
{
return m_TarImage;
}
/** Define the metric region size. */
void
SetMetricRadius(MovingRadiusType T)
{
m_MetricRadius = T;
}
/** Get the metric region size. */
MovingRadiusType
GetMetricRadius()
{
return m_MetricRadius;
}
/** Set/Get methods for the number of integration points to use
* in each 1-dimensional line integral when evaluating the load.
* This value is passed to the load implementation.
*/
void
SetNumberOfIntegrationPoints(unsigned int i)
{
m_NumberOfIntegrationPoints = i;
}
unsigned int
GetNumberOfIntegrationPoints()
{
return m_NumberOfIntegrationPoints;
}
/** Set the direction of the gradient (uphill or downhill).
* E.g. the mean squares metric should be minimized while NCC and PR should be maximized.
*/
void
SetSign(Float s)
{
m_Sign = s;
}
/** Set the sigma in a gaussian measure. */
void
SetTemp(Float s)
{
m_Temp = s;
}
/** Scaling of the similarity energy term */
void
SetGamma(Float s)
{
m_Gamma = s;
}
/** Set the pointer to the solution vector.
* \param ptr Pointer to the object of Solution class.
*/
void
SetSolution(Solution::ConstPointer ptr) override
{
m_Solution = ptr;
}
/** Get the pointer to the solution vector.
* \return Pointer to the object of Solution class.
*/
Solution::ConstPointer
GetSolution() override
{
return m_Solution;
}
/**
* This method returns the total metric evaluated over the image with respect to the current solution.
*/
Float
GetMetric(VectorType InVec);
VectorType
GetPolynomialFitToMetric(VectorType PositionInElement, VectorType SolutionAtPosition);
VectorType
MetricFiniteDiff(VectorType PositionInElement, VectorType SolutionAtPosition);
// FIXME - WE ASSUME THE 2ND VECTOR (INDEX 1) HAS THE INFORMATION WE WANT
Float
GetSolution(unsigned int i, unsigned int which = 0)
{
return m_Solution->GetSolutionValue(i, which);
}
// define the copy constructor
// ImageMetricLoad(const ImageMetricLoad& LMS);
void
InitializeMetric();
ImageMetricLoad(); // cannot be private until we always use smart pointers
Float
EvaluateMetricGivenSolution(Element::ArrayType * el, Float step = 1.0);
Float
EvaluateMetricGivenSolution1(Element::ArrayType * el, Float step = 1.0);
/**
* Compute the image based load - implemented with ITK metric derivatives.
*/
VectorType Fe(VectorType, VectorType);
static Baseclass *
NewImageMetricLoad()
{
return new ImageMetricLoad;
}
/** Set/Get the metric gradient image */
// void InitializeGradientImage();
void
SetMetricGradientImage(GradientImageType * g)
{
m_MetricGradientImage = g;
}
GradientImageType *
GetMetricGradientImage()
{
return m_MetricGradientImage;
}
void
PrintCurrentEnergy()
{
std::cout << " energy " << m_Energy << std::endl;
}
double
GetCurrentEnergy()
{
return m_Energy;
}
void
SetCurrentEnergy(double e)
{
m_Energy = e;
}
// FIXME - Documentation
void
ApplyLoad(Element::ConstPointer element, Element::VectorType & Fe) override;
protected:
void
PrintSelf(std::ostream & os, Indent indent) const override;
private:
GradientImageType * m_MetricGradientImage{};
MovingPointer m_RefImage{};
FixedPointer m_TarImage{};
MovingRadiusType m_MetricRadius{}; /** used by the metric to set
region size for fixed image*/
typename MovingType::SizeType m_RefSize{};
typename FixedType::SizeType m_TarSize{};
unsigned int m_NumberOfIntegrationPoints{};
unsigned int m_SolutionIndex{};
unsigned int m_SolutionIndex2{};
Float m_Sign{};
Float m_Temp{};
Float m_Gamma{};
typename Solution::ConstPointer m_Solution{};
MetricBaseTypePointer m_Metric{};
typename TransformBaseType::Pointer m_Transform{};
typename InterpolatorType::Pointer m_Interpolator{};
mutable double m_Energy{};
private:
};
} // end namespace fem
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkFEMImageMetricLoad.hxx"
#endif
#endif // itkFEMImageMetricLoad_h
|