1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkFEMLoadElementBase_h
#define itkFEMLoadElementBase_h
#include "itkFEMLoadBase.h"
#include "ITKFEMExport.h"
namespace itk
{
namespace fem
{
/**
* \class LoadElement
* \brief Virtual element load base class.
*
* This load class defines an external load that acts on elements in a system.
* The vector with pointers to elements defines, on which elements
* the load acts. The derived load classes should provide members, that allow the
* Element's class Fe() member function to uniquely transform the load into nodal loads.
* No special requirements are enforced on those members.
*
* Ultimately, when assembling the right hand side of the master equation (master force vector)
* the Element's Fe() member function is called with the pointer to the LoadElement class that is
* prescribed on that element. Fe() function should dynamically cast this pointer to specific
* load class, which it can handle and return the element's force vector.
* \ingroup ITKFEM
*/
class ITKFEM_EXPORT LoadElement : public Load
{
public:
/** Standard class type aliases. */
using Self = LoadElement;
using Superclass = Load;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkSimpleNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(LoadElement);
/** CreateAnother method will clone the existing instance of this type,
* including its internal member variables. */
itk::LightObject::Pointer
CreateAnother() const override;
/**
* Float type used in Element and derived classes
*/
using Float = Element::Float;
/**
* Type of array of pointers to element objects
*/
using ElementPointersVectorType = std::vector<const Element *>;
// FIXME: should clear vector, not zero it
LoadElement()
: m_Element(0)
{}
void
AddNextElement(Element::ConstPointer e)
{
this->AddNextElementInternal(e);
}
void
AddNextElement(Element::Pointer e)
{
this->AddNextElementInternal(e);
}
Element::ConstPointer
GetElement(int i);
unsigned int
GetNumberOfElements();
ElementPointersVectorType &
GetElementArray()
{
return this->m_Element;
}
const ElementPointersVectorType &
GetElementArray() const
{
return this->m_Element;
}
/** Apply the load to the specified element */
virtual void
ApplyLoad(Element::ConstPointer, Element::VectorType &)
{ /* HACK: This should probably throw an exception if it is not intended to be used. */
}
protected:
void
PrintSelf(std::ostream & os, Indent indent) const override;
void
AddNextElementInternal(const Element * e);
ElementPointersVectorType m_Element{}; /** pointers to element objects on which the
load acts */
};
} // end namespace fem
} // end namespace itk
#endif // itkFEMLoadElementBase_h
|