1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkFEMSolver.h"
#include "itkFEMSpatialObjectReader.h"
#include "itkFEMSpatialObjectWriter.h"
#include "itkFEMLinearSystemWrapperItpack.h"
#include "itkTestingMacros.h"
int
itkFEMElement2DC0LinearQuadrilateralStrainItpackTest(int argc, char * argv[])
{
if (argc != 3)
{
std::cerr << "Missing parameters." << std::endl;
std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv) << " inputFileName outputFileName" << std::endl;
return EXIT_FAILURE;
}
// Need to register default FEM object types,
// and setup spatialReader to recognize FEM types
// which is all currently done as a HACK in
// the initialization of the itk::FEMFactoryBase::GetFactory()
itk::FEMFactoryBase::GetFactory()->RegisterDefaultTypes();
using Solver2DType = itk::fem::Solver<2>;
auto solver = Solver2DType::New();
using SpatialObjectType = itk::SpatialObject<2>;
using SpatialObjectPointer = SpatialObjectType::Pointer;
SpatialObjectPointer Spatial = SpatialObjectType::New();
if (Spatial.IsNull())
{
return EXIT_FAILURE;
}
using FEMSpatialObjectReaderType = itk::FEMSpatialObjectReader<2>;
using FEMSpatialObjectReaderPointer = FEMSpatialObjectReaderType::Pointer;
FEMSpatialObjectReaderPointer spatialReader = FEMSpatialObjectReaderType::New();
spatialReader->SetFileName(argv[1]);
spatialReader->Update();
FEMSpatialObjectReaderType::GroupPointer myGroup = spatialReader->GetGroup();
if (!myGroup)
{
std::cout << "No Group : [FAILED]" << std::endl;
return EXIT_FAILURE;
}
std::cout << " [PASSED]" << std::endl;
// Testing the fe mesh validity
using FEMObjectSpatialObjectType = itk::FEMObjectSpatialObject<2>;
FEMObjectSpatialObjectType::ChildrenListType * children = spatialReader->GetGroup()->GetChildren();
itk::fem::LinearSystemWrapperItpack WrapperItpack;
WrapperItpack.SetMaximumNonZeroValuesInMatrix(1000);
if (children->front()->GetTypeName() != "FEMObjectSpatialObject")
{
std::cout << " [FAILED]" << std::endl;
return EXIT_FAILURE;
}
FEMObjectSpatialObjectType::Pointer femSO =
dynamic_cast<FEMObjectSpatialObjectType *>((*(children->begin())).GetPointer());
if (!femSO)
{
std::cout << " dynamic_cast [FAILED]" << std::endl;
return EXIT_FAILURE;
}
delete children;
femSO->GetFEMObject()->FinalizeMesh();
solver->SetInput(femSO->GetFEMObject());
solver->SetLinearSystemWrapper(&WrapperItpack);
solver->Update();
int numDOF = femSO->GetFEMObject()->GetNumberOfDegreesOfFreedom();
vnl_vector<float> soln(numDOF);
float expectedResult[8] = { 0.0f, 0.0f, 4.11808e-07f, 3.47237e-08f, 5.54107e-07f, -1.65448e-07f, 0.0f, 0.0f };
bool foundError = false;
for (int i = 0; i < numDOF; ++i)
{
soln[i] = solver->GetSolution(i);
// std::cout << "Solution[" << i << "]:" << soln[i] << std::endl;
if (itk::Math::abs(expectedResult[i] - soln[i]) > 1e-9)
{
std::cout << "ERROR: Index " << i << ". Expected " << expectedResult[i] << " Solution " << soln[i] << std::endl;
foundError = true;
}
}
if (foundError)
{
std::cout << "Test FAILED!" << std::endl;
return EXIT_FAILURE;
}
// to write the deformed mesh
auto femSODef = FEMObjectSpatialObjectType::New();
femSODef->SetFEMObject(solver->GetOutput());
using FEMSpatialObjectWriterType = itk::FEMSpatialObjectWriter<2>;
using FEMSpatialObjectWriterPointer = FEMSpatialObjectWriterType::Pointer;
FEMSpatialObjectWriterPointer spatialWriter = FEMSpatialObjectWriterType::New();
spatialWriter->SetInput(femSODef);
spatialWriter->SetFileName(argv[2]);
spatialWriter->Update();
std::cout << "Test PASSED!" << std::endl;
return EXIT_SUCCESS;
}
|