File: itkCumulativeGaussianOptimizer.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (183 lines) | stat: -rw-r--r-- 6,032 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkCumulativeGaussianOptimizer_h
#define itkCumulativeGaussianOptimizer_h

#include "itkMultipleValuedNonLinearOptimizer.h"
#include "itkCumulativeGaussianCostFunction.h"
#include "ITKOptimizersExport.h"

namespace itk
{
/** \class CumulativeGaussianOptimizer
 * \brief This is an optimizer specific to estimating
 * the parameters of Cumulative Gaussian sampled data.
 *
 * This optimizer will only work if the data array is
 * sampled from a Cumulative Gaussian curve. It's more
 * of a curve fitter than an optimizer, with the
 * advantage of being fast and specific. It works by
 * taking the derivative of the Cumulative Gaussian sample
 * then repeatedly extending the tails of the Gaussian
 * and recalculating the Gaussian parameters until
 * the change in iterations is within tolerance or very small.
 * The Gaussian is then integrated to reproduce the
 * Cumulative Gaussian and the asymptotes are estimated
 * by using least squares fit to estimate the constant
 * from integration.
 *
 * \ingroup Numerics Optimizers
 * \ingroup ITKOptimizers
 */

class ITKOptimizers_EXPORT CumulativeGaussianOptimizer : public MultipleValuedNonLinearOptimizer
{
public:
  /** Standard type alias. */
  using Self = CumulativeGaussianOptimizer;
  using Superclass = MultipleValuedNonLinearOptimizer;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Cost function type alias. NOTE: This optimizer is specific to fitting a
    Cumulative Gaussian. */
  using CostFunctionType = CumulativeGaussianCostFunction;

  /** Data array type alias. */
  using MeasureType = CostFunctionType::MeasureType;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(CumulativeGaussianOptimizer);

  /** Set and get macros. */
  itkSetMacro(DifferenceTolerance, double);
  itkGetMacro(DifferenceTolerance, double);
  itkSetMacro(Verbose, bool);
  itkGetMacro(Verbose, bool);
  itkBooleanMacro(Verbose);
  itkGetMacro(ComputedMean, double);
  itkGetMacro(ComputedStandardDeviation, double);
  itkGetMacro(UpperAsymptote, double);
  itkGetMacro(LowerAsymptote, double);
  itkGetMacro(FinalSampledArray, MeasureType *);
  itkGetMacro(FitError, double);

  void
  SetDataArray(MeasureType * cumGaussianArray);

  /** Start the optimizer. */
  void
  StartOptimization() override;

  /** Print an array. */
  void
  PrintArray(MeasureType * array);

  /** Report the reason for stopping. */
  const std::string
  GetStopConditionDescription() const override;

protected:
  CumulativeGaussianOptimizer();
  ~CumulativeGaussianOptimizer() override;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

private:
  /** When to stop the iteration for the Gaussian extension loop. */
  double m_DifferenceTolerance{};

  /** The final mean of the Cumulative Gaussian. */
  double m_ComputedMean{};

  /** The final standard deviation of the Cumulative Gaussian. */
  double m_ComputedStandardDeviation{};

  /** The final amplitude of the Gaussian. */
  double m_ComputedAmplitude{};

  /** The transition height (distance between upper and lower
   * asymptotes) of the Cumulative Gaussian. */
  double m_ComputedTransitionHeight{};

  /** The final upper asymptote of the Cumulative Gaussian. */
  double m_UpperAsymptote{};

  /** The final lower asymptote of the Cumulative Gaussian. */
  double m_LowerAsymptote{};

  /** Offset for the mean calculation. */
  double m_OffsetForMean{};

  /** Flag to print iteration results. */
  bool m_Verbose{};

  /** Least squares fit error as a measure of goodness. */
  double m_FitError{};

  /** Array of values computed from the final parameters of the
   * Cumulative Gaussian. */
  MeasureType * m_FinalSampledArray{};

  /** Original data array. */
  MeasureType * m_CumulativeGaussianArray{};

  /** Extend the tails of the Gaussian. */
  MeasureType *
  ExtendGaussian(MeasureType * originalArray, MeasureType * extendedArray, int startingPointForInsertion);

  /** Recalculate the parameters of the extended Gaussian array. */
  MeasureType *
  RecalculateExtendedArrayFromGaussianParameters(MeasureType * originalArray,
                                                 MeasureType * extendedArray,
                                                 int           startingPointForInsertion) const;

  /** Calculates the squared difference error between each Gaussian
   * iteration loop. */
  double
  FindAverageSumOfSquaredDifferences(MeasureType * array1, MeasureType * array2);

  /** Given an array sampled from a Gaussian, compute the final parameters. */
  void
  FindParametersOfGaussian(MeasureType * sampledGaussianArray);

  /** Measure the parameters of a Gaussian sampled array. */
  void
  MeasureGaussianParameters(MeasureType * array);

  /** Print the header for output table. */
  void
  PrintComputedParameterHeader();

  /** Print the computed parameters. */
  void
  PrintComputedParameters() const;

  /** Find the constant of the integrated sample. */
  double
  VerticalBestShift(MeasureType * originalArray, MeasureType * newArray);

  /** Describe the stop condition */
  std::ostringstream m_StopConditionDescription{};
};
} // end namespace itk

#endif