File: itkMultipleValuedVnlCostFunctionAdaptor.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (163 lines) | stat: -rw-r--r-- 5,473 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkMultipleValuedVnlCostFunctionAdaptor_h
#define itkMultipleValuedVnlCostFunctionAdaptor_h

#include "itkMultipleValuedCostFunction.h"
#include "vnl/vnl_least_squares_function.h"
#include "ITKOptimizersExport.h"

namespace itk
{
/** \class MultipleValuedVnlCostFunctionAdaptor
 * \brief This class is an Adaptor that allows to pass
 * itk::MultipleValuedCostFunctions to vnl_optimizers expecting
 * a vnl_cost_function.
 *
 * This class returns a single valued.
 *
 * \ingroup Numerics Optimizers
 * \ingroup ITKOptimizers
 */
class ITKOptimizers_EXPORT MultipleValuedVnlCostFunctionAdaptor : public vnl_least_squares_function
{
public:
  /** InternalParametersType type alias. */
  using InternalParametersType = vnl_vector<double>;

  /** InternalMeasureType type alias. */
  using InternalMeasureType = vnl_vector<double>;

  /** InternalGradientType type alias. */
  using InternalDerivativeType = vnl_matrix<double>;

  /** MeasureType of the MultipleValuedCostFunction */
  using MeasureType = MultipleValuedCostFunction::MeasureType;

  /** Parameters of the MultipleValuedCostFunction */
  using ParametersType = MultipleValuedCostFunction::ParametersType;

  /** Derivatives of the MultipleValuedCostFunction */
  using DerivativeType = MultipleValuedCostFunction::DerivativeType;

  /** Scales type alias */
  using ScalesType = Array<double>;

  /** Constructor with size */
  MultipleValuedVnlCostFunctionAdaptor(unsigned int spaceDimension, unsigned int numberOfValues);

  /** Set the CostFunction deriving from MultipleValuedCostFunction */
  void
  SetCostFunction(MultipleValuedCostFunction * costFunction)
  {
    m_CostFunction = costFunction;
  }

  /** Get the CostFunction deriving from MultipleValuedCostFunction */
  const MultipleValuedCostFunction *
  GetCostFunction() const
  {
    return m_CostFunction;
  }

  /**  Delegate computation of the value to the CostFunction. */
  void
  f(const InternalParametersType & inparameters, InternalMeasureType & measures) override;

  /**  Delegate computation of the gradient to the costFunction.  */
  void
  gradf(const InternalParametersType & inparameters, InternalDerivativeType & gradient) override;

  /**  Delegate computation of value and gradient to the costFunction.     */
  virtual void
  compute(const InternalParametersType & x, InternalMeasureType * ff, InternalDerivativeType * g);

  /**  Convert external derivative measures  into internal type */
  void
  ConvertExternalToInternalGradient(const DerivativeType & input, InternalDerivativeType & output);

  /**  Convert external measures  into internal type */
  void
  ConvertExternalToInternalMeasures(const MeasureType & input, InternalMeasureType & output);

  /**  Define if the Cost function should provide a customized
       Gradient computation or the gradient can be computed internally
       using a default approach  */
  void
  SetUseGradient(bool);

  void
  UseGradientOn()
  {
    this->SetUseGradient(true);
  }
  void
  UseGradientOff()
  {
    this->SetUseGradient(false);
  }
  bool
  GetUseGradient() const;

  /** Set current parameters scaling. */
  void
  SetScales(const ScalesType & scales);

  /** This AddObserver method allows to simulate that this class derives from
   * an itkObject for the purpose of reporting iteration events. The goal of
   * this method is to allow ITK-vnl optimizer adaptors to get iteration events
   * despite the fact that VNL does not provide callbacks. */
  unsigned long
  AddObserver(const EventObject & event, Command *) const;

  /** Return the value of the last evaluation to the value of the cost function.
   *  Note that this method DOES NOT triggers a computation of the function or
   *  the derivatives, it only returns previous values. Therefore the values here
   *  are only valid after you invoke the f() or gradf() methods. */
  const MeasureType &
  GetCachedValue() const;

  const DerivativeType &
  GetCachedDerivative() const;

  const ParametersType &
  GetCachedCurrentParameters() const;

protected:
  /** This method is intended to be called by the derived classes in order to
   * notify of an iteration event to any Command/Observers */
  void
  ReportIteration(const EventObject & event) const;

private:
  /** Get current parameters scaling. */
  itkGetConstReferenceMacro(InverseScales, ScalesType);

  MultipleValuedCostFunction::Pointer m_CostFunction{};

  bool            m_ScalesInitialized{};
  ScalesType      m_InverseScales{};
  Object::Pointer m_Reporter{};

  mutable MeasureType    m_CachedValue{};
  mutable DerivativeType m_CachedDerivative{};
  mutable ParametersType m_CachedCurrentParameters{};
}; // end of Class CostFunction
} // end namespace itk

#endif