1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkSPSAOptimizer_h
#define itkSPSAOptimizer_h
#include "itkSingleValuedNonLinearOptimizer.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "ITKOptimizersExport.h"
namespace itk
{
/** \class SPSAOptimizerEnums
* \brief Contains all enum classes used by SPSAOptimizer class.
* \ingroup ITKOptimizers
*/
class SPSAOptimizerEnums
{
public:
/** \class StopConditionSPSAOptimizer
* \ingroup ITKOptimizers
* Codes of stopping conditions */
enum class StopConditionSPSAOptimizer : uint8_t
{
Unknown,
MaximumNumberOfIterations,
BelowTolerance,
MetricError
};
};
// Define how to print enumeration
extern ITKOptimizers_EXPORT std::ostream &
operator<<(std::ostream & out, const SPSAOptimizerEnums::StopConditionSPSAOptimizer value);
/**
* \class SPSAOptimizer
* \brief An optimizer based on simultaneous perturbation...
*
* This optimizer is an implementation of the Simultaneous
* Perturbation Stochastic Approximation method, described in:
*
* - https://www.jhuapl.edu/SPSA/
*
* - Spall, J.C. (1998), "An Overview of the Simultaneous
* Perturbation Method for Efficient Optimization," Johns
* Hopkins APL Technical Digest, vol. 19, pp. 482-492
*
* \ingroup Optimizers
* \ingroup ITKOptimizers
*/
class ITKOptimizers_EXPORT SPSAOptimizer : public SingleValuedNonLinearOptimizer
{
public:
ITK_DISALLOW_COPY_AND_MOVE(SPSAOptimizer);
/** Standard class type aliases. */
using Self = SPSAOptimizer;
using Superclass = SingleValuedNonLinearOptimizer;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(SPSAOptimizer);
using StopConditionSPSAOptimizerEnum = SPSAOptimizerEnums::StopConditionSPSAOptimizer;
#if !defined(ITK_LEGACY_REMOVE)
// We need to expose the enum values at the class level
// for backwards compatibility
static constexpr StopConditionSPSAOptimizerEnum Unknown = StopConditionSPSAOptimizerEnum::Unknown;
static constexpr StopConditionSPSAOptimizerEnum MaximumNumberOfIterations =
StopConditionSPSAOptimizerEnum::MaximumNumberOfIterations;
static constexpr StopConditionSPSAOptimizerEnum BelowTolerance = StopConditionSPSAOptimizerEnum::BelowTolerance;
static constexpr StopConditionSPSAOptimizerEnum MetricError = StopConditionSPSAOptimizerEnum::MetricError;
#endif
/** Advance one step following the gradient direction. */
virtual void
AdvanceOneStep();
/** Start optimization. */
void
StartOptimization() override;
/** Resume previously stopped optimization with current parameters
* \sa StopOptimization. */
void
ResumeOptimization();
/** Stop optimization.
* \sa ResumeOptimization */
void
StopOptimization();
/** Get the cost function value at the current position. */
virtual MeasureType
GetValue() const;
/** Get the cost function value at any position */
virtual MeasureType
GetValue(const ParametersType & parameters) const;
/** Guess the parameters a and A. This function needs the
* number of GradientEstimates used for estimating a and A and
* and the expected initial step size (where step size is
* defined as the maximum of the absolute values of the
* parameter update). Make sure you set c, Alpha, Gamma,
* the MaximumNumberOfIterations, the Scales, and the
* the InitialPosition before calling this method.
*
* Described in:
* Spall, J.C. (1998), "Implementation of the Simultaneous Perturbation
* Algorithm for Stochastic Optimization", IEEE Trans. Aerosp. Electron.
* Syst. 34(3), 817-823.
*/
virtual void
GuessParameters(SizeValueType numberOfGradientEstimates, double initialStepSize);
/** Get the current iteration number. */
itkGetConstMacro(CurrentIteration, SizeValueType);
/** Get Stop condition. */
itkGetConstMacro(StopCondition, StopConditionSPSAOptimizerEnum);
/** Get the current LearningRate (a_k) */
itkGetConstMacro(LearningRate, double);
/** Get the GradientMagnitude of the latest computed gradient */
itkGetConstMacro(GradientMagnitude, double);
/** Get the latest computed gradient */
itkGetConstReferenceMacro(Gradient, DerivativeType);
/** Set/Get a. */
itkSetMacro(Sa, double);
itkGetConstMacro(Sa, double);
// For backward compatibility
void
Seta(double a)
{
SetSa(a);
}
double
Geta() const
{
return GetSa();
}
/** Set/Get c. */
itkSetMacro(Sc, double);
itkGetConstMacro(Sc, double);
// For backward compatibility
void
Setc(double c)
{
SetSc(c);
}
double
Getc() const
{
return GetSc();
}
/** Set/Get A. */
itkSetMacro(A, double);
itkGetConstMacro(A, double);
/** Set/Get alpha. */
itkSetMacro(Alpha, double);
itkGetConstMacro(Alpha, double);
/** Set/Get gamma. */
itkSetMacro(Gamma, double);
itkGetConstMacro(Gamma, double);
/** Methods to configure the cost function. */
itkGetConstMacro(Maximize, bool);
itkSetMacro(Maximize, bool);
itkBooleanMacro(Maximize);
bool
GetMinimize() const
{
return !m_Maximize;
}
void
SetMinimize(bool v)
{
this->SetMaximize(!v);
}
void
MinimizeOn()
{
this->MaximizeOff();
}
void
MinimizeOff()
{
this->MaximizeOn();
}
/** Set/Get the number of perturbation used to construct
* a gradient estimate g_k.
* q = NumberOfPerturbations
* g_k = 1/q sum_{j=1..q} g^(j)_k
*/
itkSetMacro(NumberOfPerturbations, SizeValueType);
itkGetConstMacro(NumberOfPerturbations, SizeValueType);
/**
* Get the state of convergence in the last iteration. When the
* StateOfConvergence is lower than the Tolerance, and the minimum
* number of iterations has been performed, the optimization
* stops.
*
* The state of convergence (SOC) is initialized with 0.0 and
* updated after each iteration as follows:
* SOC *= SOCDecayRate
* SOC += a_k * GradientMagnitude
*/
itkGetConstMacro(StateOfConvergence, double);
/** Set/Get StateOfConvergenceDecayRate (number between 0 and 1). */
itkSetMacro(StateOfConvergenceDecayRate, double);
itkGetConstMacro(StateOfConvergenceDecayRate, double);
/** Set/Get the minimum number of iterations */
itkSetMacro(MinimumNumberOfIterations, SizeValueType);
itkGetConstMacro(MinimumNumberOfIterations, SizeValueType);
/** Set/Get the maximum number of iterations. */
itkSetMacro(MaximumNumberOfIterations, SizeValueType);
itkGetConstMacro(MaximumNumberOfIterations, SizeValueType);
/** Set/Get Tolerance */
itkSetMacro(Tolerance, double);
itkGetConstMacro(Tolerance, double);
/** Get the reason for termination */
const std::string
GetStopConditionDescription() const override;
protected:
SPSAOptimizer();
~SPSAOptimizer() override = default;
/** PrintSelf method. */
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Variables updated during optimization */
DerivativeType m_Gradient{};
double m_LearningRate{};
DerivativeType m_Delta{};
bool m_Stop{ false };
StopConditionSPSAOptimizerEnum m_StopCondition{};
double m_StateOfConvergence{};
SizeValueType m_CurrentIteration{};
/** Random number generator */
Statistics::MersenneTwisterRandomVariateGenerator::Pointer m_Generator{};
/** Method to compute the learning rate at iteration k (a_k). */
virtual double
Compute_a(SizeValueType k) const;
/**
* Method to compute the gain factor for the perturbation
* at iteration k (c_k).
*/
virtual double
Compute_c(SizeValueType k) const;
/** Generate a perturbation vector delta.
*
* The elements are drawn from a Bernoulli distribution (+-1).
*
* Takes scales into account.
*/
virtual void
GenerateDelta(const unsigned int spaceDimension);
/**
* Compute the gradient at a position. m_NumberOfPerturbations are used,
* and scales are taken into account.
*/
virtual void
ComputeGradient(const ParametersType & parameters, DerivativeType & gradient);
private:
/** Settings.*/
SizeValueType m_MinimumNumberOfIterations{};
SizeValueType m_MaximumNumberOfIterations{};
double m_StateOfConvergenceDecayRate{};
double m_Tolerance{};
bool m_Maximize{};
double m_GradientMagnitude{};
SizeValueType m_NumberOfPerturbations{};
/** Parameters, as described by Spall.*/
double m_Sa{};
double m_Sc{};
double m_A{};
double m_Alpha{};
double m_Gamma{};
}; // end class SPSAOptimizer
// Define how to print enumeration
extern ITKOptimizers_EXPORT std::ostream &
operator<<(std::ostream & out, const SPSAOptimizer::StopConditionSPSAOptimizerEnum value);
} // end namespace itk
#endif // end #ifndef itkSPSAOptimizer_h
|