File: itkVersorRigid3DTransformOptimizerTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (368 lines) | stat: -rw-r--r-- 10,964 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkVersorRigid3DTransformOptimizer.h"
#include "itkVersorRigid3DTransform.h"


/** The objectif function is the sum of squared distances between two pairs of points.
 *
 *  f( T ) =  |T(P1) - P|^2 + |T(Q1) - Q|^2
 *
 *  where:
 *
 *    P1, Q1 are two arbitrary points
 *    P = R( P1 ) => P is P1 transformed by R
 *    Q = R( Q1 ) => Q is Q1 transformed by R
 *
 *    T  is the VersorRigid transform being sought
 *       and corresponds to T = R
 *
 *  We arbitrarily choose
 *       P1 = [ 0  0 10 ]
 *       Q1 = [ 0 10  0 ]
 *
 *       R = ( sin(10/2),0,0 ), ( 0, 30, 30 )
 *
 *  So P, and Q are
 *
 *       P =
 *       Q =
 *
 * \class versorRigid3DCostFunction
 *
 */
class versorRigid3DCostFunction : public itk::SingleValuedCostFunction
{
public:
  using Self = versorRigid3DCostFunction;
  using Superclass = itk::SingleValuedCostFunction;
  using Pointer = itk::SmartPointer<Self>;
  using ConstPointer = itk::SmartPointer<const Self>;

  using TransformType = itk::VersorRigid3DTransform<double>;

  itkNewMacro(Self);
  itkOverrideGetNameOfClassMacro(versorRigid3DCostFunction);

  static constexpr unsigned int SpaceDimension = 6;

  using ParametersType = Superclass::ParametersType;
  using DerivativeType = Superclass::DerivativeType;

  using VersorType = itk::Versor<double>;
  using AxisType = VersorType::VectorType;
  using VectorType = itk::Vector<double, 3>;
  using PointType = itk::Point<double, 3>;

  using MeasureType = double;


  versorRigid3DCostFunction()
  {
    m_Transform = TransformType::New();

    m_P1[0] = 0.0;
    m_P1[1] = 0.0;
    m_P1[2] = 10.0;

    m_Q1[0] = 0.0;
    m_Q1[1] = 10.0;
    m_Q1[2] = 0.0;

    VersorType   versor;
    const double angle = 10.0 * std::atan(1.0) / 45.0;
    versor.SetRotationAroundX(angle);

    m_Transform->SetRotation(versor);

    TransformType::OutputVectorType translation;
    translation[0] = 0.0;
    translation[1] = 30.0;
    translation[2] = 30.0;

    m_Transform->SetTranslation(translation);

    m_P = m_Transform->TransformPoint(m_P1);
    m_Q = m_Transform->TransformPoint(m_Q1);

    std::cout << "Versor used = " << versor << std::endl;
    std::cout << "Vector used = " << translation << std::endl;

    std::cout << "m_P1 = " << m_P1 << std::endl;
    std::cout << "m_Q1 = " << m_Q1 << std::endl;
    std::cout << "m_P  = " << m_P << std::endl;
    std::cout << "m_Q  = " << m_Q << std::endl;
  }


  MeasureType
  GetValue(const ParametersType & parameters) const override
  {
    TransformType::ParametersType p(Self::SpaceDimension);
    for (unsigned int i = 0; i < 6; ++i)
    {
      p[i] = parameters[i];
    }

    m_Transform->SetParameters(p);

    PointType P2 = m_Transform->TransformPoint(m_P1);
    PointType Q2 = m_Transform->TransformPoint(m_Q1);

    MeasureType measure = P2.SquaredEuclideanDistanceTo(m_P) + Q2.SquaredEuclideanDistanceTo(m_Q);

    return measure;
  }

  void
  GetDerivative(const ParametersType & parameters, DerivativeType & derivative) const override
  {
    VectorType rightPart;
    for (unsigned int i = 0; i < 3; ++i)
    {
      rightPart[i] = parameters[i];
    }

    VersorType currentVersor;
    currentVersor.Set(rightPart);


    const MeasureType baseValue = this->GetValue(parameters);

    VersorType versorX;
    VersorType versorY;
    VersorType versorZ;

    constexpr double deltaAngle = 0.00175; // in radians = about 0.1 degree

    versorX.SetRotationAroundX(deltaAngle);
    versorY.SetRotationAroundY(deltaAngle);
    versorZ.SetRotationAroundZ(deltaAngle);

    VersorType plusdDeltaX = currentVersor * versorX;
    VersorType plusdDeltaY = currentVersor * versorY;
    VersorType plusdDeltaZ = currentVersor * versorZ;

    ParametersType parametersPlustDeltaVX = parameters;
    ParametersType parametersPlustDeltaVY = parameters;
    ParametersType parametersPlustDeltaVZ = parameters;

    ParametersType parametersPlustDeltaTX = parameters;
    ParametersType parametersPlustDeltaTY = parameters;
    ParametersType parametersPlustDeltaTZ = parameters;

    parametersPlustDeltaVX[0] = plusdDeltaX.GetX();
    parametersPlustDeltaVX[1] = plusdDeltaX.GetY();
    parametersPlustDeltaVX[2] = plusdDeltaX.GetZ();

    parametersPlustDeltaVY[0] = plusdDeltaY.GetX();
    parametersPlustDeltaVY[1] = plusdDeltaY.GetY();
    parametersPlustDeltaVY[2] = plusdDeltaY.GetZ();

    parametersPlustDeltaVZ[0] = plusdDeltaZ.GetX();
    parametersPlustDeltaVZ[1] = plusdDeltaZ.GetY();
    parametersPlustDeltaVZ[2] = plusdDeltaZ.GetZ();

    const MeasureType turnXValue = this->GetValue(parametersPlustDeltaVX);
    const MeasureType turnYValue = this->GetValue(parametersPlustDeltaVY);
    const MeasureType turnZValue = this->GetValue(parametersPlustDeltaVZ);

    derivative = DerivativeType(SpaceDimension);

    derivative[0] = (turnXValue - baseValue) / deltaAngle;
    derivative[1] = (turnYValue - baseValue) / deltaAngle;
    derivative[2] = (turnZValue - baseValue) / deltaAngle;

    const double deltaTranslation = deltaAngle; // just to keep the scaling

    parametersPlustDeltaTX[3] += deltaTranslation;
    parametersPlustDeltaTY[4] += deltaTranslation;
    parametersPlustDeltaTZ[5] += deltaTranslation;

    const MeasureType transXValue = this->GetValue(parametersPlustDeltaTX);
    const MeasureType transYValue = this->GetValue(parametersPlustDeltaTY);
    const MeasureType transZValue = this->GetValue(parametersPlustDeltaTZ);

    derivative[3] = (transXValue - baseValue) / deltaTranslation;
    derivative[4] = (transYValue - baseValue) / deltaTranslation;
    derivative[5] = (transZValue - baseValue) / deltaTranslation;
  }

  unsigned int
  GetNumberOfParameters() const override
  {
    return Self::SpaceDimension;
  }

private:
  mutable TransformType::Pointer m_Transform;

  PointType m_P;
  PointType m_Q;
  PointType m_P1;
  PointType m_Q1;
};

int
itkVersorRigid3DTransformOptimizerTest(int, char *[])
{
  std::cout << "VersorRigid3DTransform Optimizer Test ";
  std::cout << std::endl << std::endl;

  using OptimizerType = itk::VersorRigid3DTransformOptimizer;

  using ScalesType = OptimizerType::ScalesType;


  // Declaration of an itkOptimizer
  auto itkOptimizer = OptimizerType::New();


  // Declaration of the CostFunction adaptor
  auto costFunction = versorRigid3DCostFunction::New();


  itkOptimizer->SetCostFunction(costFunction);


  using ParametersType = versorRigid3DCostFunction::ParametersType;
  using VersorType = itk::Versor<double>;

  // We start with a null rotation
  VersorType::VectorType axis;
  axis[0] = 1.0f;
  axis[1] = 0.0f;
  axis[2] = 0.0f;

  VersorType::ValueType angle = 0.0f;

  VersorType initialRotation;
  initialRotation.Set(axis, angle);

  const unsigned int parametersDimensions = costFunction->GetNumberOfParameters();

  ParametersType initialPosition(parametersDimensions);
  initialPosition[0] = initialRotation.GetX();
  initialPosition[1] = initialRotation.GetY();
  initialPosition[2] = initialRotation.GetZ();
  initialPosition[3] = 0.0;
  initialPosition[4] = 0.0;
  initialPosition[5] = 0.0;

  ScalesType       parametersScale(parametersDimensions);
  constexpr double translationScaleFactor = 50.0;
  parametersScale[0] = 1.0;
  parametersScale[1] = 1.0;
  parametersScale[2] = 1.0;
  parametersScale[3] = 1.0 / translationScaleFactor;
  parametersScale[4] = 1.0 / translationScaleFactor;
  parametersScale[5] = 1.0 / translationScaleFactor;

  itkOptimizer->MaximizeOff();
  itkOptimizer->SetScales(parametersScale);
  itkOptimizer->SetGradientMagnitudeTolerance(1e-35);
  itkOptimizer->SetMaximumStepLength(10.0);
  itkOptimizer->SetMinimumStepLength(1e-5);
  itkOptimizer->SetNumberOfIterations(50);

  std::cout << "Initial Position = " << std::endl;
  std::cout << initialPosition << std::endl << std::endl;

  itkOptimizer->SetInitialPosition(initialPosition);

  try
  {
    itkOptimizer->StartOptimization();
  }
  catch (const itk::ExceptionObject & e)
  {
    std::cout << "Exception thrown ! " << std::endl;
    std::cout << "An error occurred during Optimization" << std::endl;
    std::cout << "Location    = " << e.GetLocation() << std::endl;
    std::cout << "Description = " << e.GetDescription() << std::endl;
    return EXIT_FAILURE;
  }

  ParametersType finalPosition(parametersDimensions);
  finalPosition = itkOptimizer->GetCurrentPosition();

  constexpr unsigned int spaceDimensions = 3;

  VersorType             finalRotation;
  VersorType::VectorType finalRightPart;
  for (unsigned int i = 0; i < spaceDimensions; ++i)
  {
    finalRightPart[i] = finalPosition[i];
  }
  finalRotation.Set(finalRightPart);
  std::cout << std::endl;
  std::cout << "Solution versor  = (" << finalRotation << ')' << std::endl;

  VersorType::VectorType finalTranslation;
  for (unsigned int j = 0; j < spaceDimensions; ++j)
  {
    finalTranslation[j] = finalPosition[j + spaceDimensions];
  }
  std::cout << "Solution vector  = (" << finalTranslation << ')' << std::endl;

  //
  // check results to see if it is within range
  //
  bool pass = true;

  // True versor

  VersorType::VectorType trueAxis;
  VersorType::ValueType  trueAngle;
  trueAxis[0] = 1.0f;
  trueAxis[1] = 0.0f;
  trueAxis[2] = 0.0f;
  trueAngle = 10.0 * std::atan(1.0f) / 45.0;
  VersorType trueRotation;
  trueRotation.Set(trueAxis, trueAngle);

  ParametersType trueParameters(parametersDimensions);
  trueParameters[0] = trueRotation.GetX();
  trueParameters[1] = trueRotation.GetY();
  trueParameters[2] = trueRotation.GetZ();
  trueParameters[3] = 0.0;
  trueParameters[4] = 30.0;
  trueParameters[5] = 30.0;

  std::cout << std::endl;
  std::cout << "Final parameters = " << finalPosition << std::endl;
  std::cout << "True Parameters  = " << trueParameters << std::endl;

  VersorType                  ratio = finalRotation * trueRotation.GetReciprocal();
  const VersorType::ValueType cosHalfAngle = ratio.GetW();
  const VersorType::ValueType cosHalfAngleSquare = cosHalfAngle * cosHalfAngle;
  if (cosHalfAngleSquare < 0.95)
  {
    pass = false;
  }

  if (!pass)
  {
    std::cout << std::endl << "Test FAILEd !" << std::endl;
    return EXIT_FAILURE;
  }

  std::cout << std::endl << "Test PASSED !" << std::endl;
  return EXIT_SUCCESS;
}