1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkVersorTransformOptimizer.h"
#include "itkVersorTransform.h"
/**
* The objectif function is the scalar product:
*
* f( V ) = < A, V(B) >
*
* where:
*
* V is a Versor representing a rotation
* A is a vector
* B is another vector
*
* the vector A = [ 0 0 1 ]
* the vector B = [ 0 1 0 ]
*
* the Versor solution should be: V = [ k1 0 0 k2 ]
*
* k1 = sin( 45 degrees )
* k2 = cos( 45 degrees )
*
* \class versorCostFunction
*/
class versorCostFunction : public itk::SingleValuedCostFunction
{
public:
using Self = versorCostFunction;
using Superclass = itk::SingleValuedCostFunction;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
using TransformType = itk::VersorTransform<double>;
itkNewMacro(Self);
itkOverrideGetNameOfClassMacro(versorCostFunction);
enum
{
SpaceDimension = 3
};
using ParametersType = Superclass::ParametersType;
using DerivativeType = Superclass::DerivativeType;
using VersorType = itk::Versor<double>;
using AxisType = VersorType::VectorType;
using VectorType = itk::Vector<double, SpaceDimension>;
using MeasureType = double;
versorCostFunction() { m_Transform = TransformType::New(); }
MeasureType
GetValue(const ParametersType & parameters) const override
{
std::cout << "GetValue( " << parameters << " ) = ";
VectorType A;
VectorType B;
A[0] = 0;
A[1] = 0;
A[2] = 1;
B[0] = 0;
B[1] = 1;
B[2] = 0;
VectorType rightPart;
for (unsigned int i = 0; i < 3; ++i)
{
rightPart[i] = parameters[i];
}
VersorType versor;
versor.Set(rightPart);
m_Transform->SetRotation(versor);
const VectorType C = m_Transform->TransformVector(B);
MeasureType measure = A * C;
std::cout << measure << std::endl;
return measure;
}
void
GetDerivative(const ParametersType & parameters, DerivativeType & derivative) const override
{
VectorType rightPart;
for (unsigned int i = 0; i < 3; ++i)
{
rightPart[i] = parameters[i];
}
VersorType currentVersor;
currentVersor.Set(rightPart);
const MeasureType baseValue = this->GetValue(parameters);
VersorType versorX;
VersorType versorY;
VersorType versorZ;
constexpr double deltaAngle = 0.00175; // in radians = about 0.1 degree
versorX.SetRotationAroundX(deltaAngle);
versorY.SetRotationAroundY(deltaAngle);
versorZ.SetRotationAroundZ(deltaAngle);
VersorType plusdDeltaX = currentVersor * versorX;
VersorType plusdDeltaY = currentVersor * versorY;
VersorType plusdDeltaZ = currentVersor * versorZ;
ParametersType parametersPlustDeltaX(SpaceDimension);
ParametersType parametersPlustDeltaY(SpaceDimension);
ParametersType parametersPlustDeltaZ(SpaceDimension);
parametersPlustDeltaX[0] = plusdDeltaX.GetX();
parametersPlustDeltaX[1] = plusdDeltaX.GetY();
parametersPlustDeltaX[2] = plusdDeltaX.GetZ();
parametersPlustDeltaY[0] = plusdDeltaY.GetX();
parametersPlustDeltaY[1] = plusdDeltaY.GetY();
parametersPlustDeltaY[2] = plusdDeltaY.GetZ();
parametersPlustDeltaZ[0] = plusdDeltaZ.GetX();
parametersPlustDeltaZ[1] = plusdDeltaZ.GetY();
parametersPlustDeltaZ[2] = plusdDeltaZ.GetZ();
const MeasureType turnXValue = this->GetValue(parametersPlustDeltaX);
const MeasureType turnYValue = this->GetValue(parametersPlustDeltaY);
const MeasureType turnZValue = this->GetValue(parametersPlustDeltaZ);
derivative = DerivativeType(SpaceDimension);
derivative[0] = (turnXValue - baseValue) / deltaAngle;
derivative[1] = (turnYValue - baseValue) / deltaAngle;
derivative[2] = (turnZValue - baseValue) / deltaAngle;
}
unsigned int
GetNumberOfParameters() const override
{
return SpaceDimension;
}
private:
mutable TransformType::Pointer m_Transform;
};
int
itkVersorTransformOptimizerTest(int, char *[])
{
std::cout << "VersorTransform Optimizer Test ";
std::cout << std::endl << std::endl;
using OptimizerType = itk::VersorTransformOptimizer;
using ScalesType = OptimizerType::ScalesType;
// Declaration of an itkOptimizer
auto itkOptimizer = OptimizerType::New();
// Declaration of the CostFunction adaptor
auto costFunction = versorCostFunction::New();
itkOptimizer->SetCostFunction(costFunction);
using ParametersType = versorCostFunction::ParametersType;
using VersorType = OptimizerType::VersorType;
// We start with a null rotation
VersorType::VectorType axis;
axis[0] = 1.0f;
axis[1] = 0.0f;
axis[2] = 0.0f;
VersorType::ValueType angle = 0.0f;
VersorType initialRotation;
initialRotation.Set(axis, angle);
const unsigned int spaceDimensions = costFunction->GetNumberOfParameters();
ParametersType initialPosition(spaceDimensions);
initialPosition[0] = initialRotation.GetX();
initialPosition[1] = initialRotation.GetY();
initialPosition[2] = initialRotation.GetZ();
ScalesType parametersScale(spaceDimensions);
parametersScale[0] = 1.0;
parametersScale[1] = 1.0;
parametersScale[2] = 1.0;
itkOptimizer->MaximizeOn();
itkOptimizer->SetScales(parametersScale);
itkOptimizer->SetGradientMagnitudeTolerance(1e-15);
itkOptimizer->SetMaximumStepLength(0.1745); // About 10 deegres
itkOptimizer->SetMinimumStepLength(1e-9);
itkOptimizer->SetNumberOfIterations(10);
itkOptimizer->SetInitialPosition(initialPosition);
try
{
itkOptimizer->StartOptimization();
}
catch (const itk::ExceptionObject & e)
{
std::cout << "Exception thrown ! " << std::endl;
std::cout << "An error occurred during Optimization" << std::endl;
std::cout << "Location = " << e.GetLocation() << std::endl;
std::cout << "Description = " << e.GetDescription() << std::endl;
return EXIT_FAILURE;
}
ParametersType finalPosition(spaceDimensions);
finalPosition = itkOptimizer->GetCurrentPosition();
VersorType finalRotation;
VersorType::VectorType finalRightPart;
for (unsigned int i = 0; i < spaceDimensions; ++i)
{
finalRightPart[i] = finalPosition[i];
}
finalRotation.Set(finalRightPart);
std::cout << "Solution = (" << finalRotation << ')' << std::endl;
//
// check results to see if it is within range
//
bool pass = true;
// True versor
VersorType::VectorType trueAxis;
VersorType::ValueType trueAngle;
trueAxis[0] = 1.0f;
trueAxis[1] = 0.0f;
trueAxis[2] = 0.0f;
trueAngle = 2.0 * std::atan(1.0f);
VersorType trueRotation;
trueRotation.Set(trueAxis, trueAngle);
ParametersType trueParameters(spaceDimensions);
trueParameters[0] = trueRotation.GetX();
trueParameters[1] = trueRotation.GetY();
trueParameters[2] = trueRotation.GetZ();
std::cout << "True Parameters = " << trueParameters << std::endl;
VersorType ratio = finalRotation * trueRotation.GetReciprocal();
const VersorType::ValueType cosHalfAngle = ratio.GetW();
const VersorType::ValueType cosHalfAngleSquare = cosHalfAngle * cosHalfAngle;
if (cosHalfAngleSquare < 0.95)
{
pass = false;
}
if (!pass)
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|