1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkGradientDescentLineSearchOptimizerv4_h
#define itkGradientDescentLineSearchOptimizerv4_h
#include "itkGradientDescentOptimizerv4.h"
#include "itkOptimizerParameterScalesEstimator.h"
#include "itkWindowConvergenceMonitoringFunction.h"
namespace itk
{
/**
* \class GradientDescentLineSearchOptimizerv4Template
* \brief Gradient descent optimizer with a golden section line search.
*
* GradientDescentLineSearchOptimizer implements a simple gradient descent optimizer
* that is followed by a line search to find the best value for the learning rate.
* At each iteration the current position is updated according to
*
* \f[
* p_{n+1} = p_n
* + \mbox{learningRateByGoldenSectionLineSearch}
\, \frac{\partial f(p_n) }{\partial p_n}
* \f]
*
* Options are identical to the superclass's except for:
*
* options Epsilon, LowerLimit and UpperLimit that will guide
* a golden section line search to find the optimal gradient update
* within the range :
*
* [ learningRate * LowerLimit , learningRate * UpperLimit ]
*
* where Epsilon sets the resolution of the search. Smaller values
* lead to additional computation time but better localization of
* the minimum.
*
* By default, this optimizer will return the best value and associated
* parameters that were calculated during the optimization.
* See SetReturnBestParametersAndValue().
*
* \ingroup ITKOptimizersv4
*/
template <typename TInternalComputationValueType>
class ITK_TEMPLATE_EXPORT GradientDescentLineSearchOptimizerv4Template
: public GradientDescentOptimizerv4Template<TInternalComputationValueType>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(GradientDescentLineSearchOptimizerv4Template);
/** Standard class type aliases. */
using Self = GradientDescentLineSearchOptimizerv4Template;
using Superclass = GradientDescentOptimizerv4Template<TInternalComputationValueType>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(GradientDescentLineSearchOptimizerv4Template);
/** New macro for creation of through a Smart Pointer */
itkNewMacro(Self);
/** It should be possible to derive the internal computation type from the class object. */
using InternalComputationValueType = TInternalComputationValueType;
/** Derivative type */
using typename Superclass::DerivativeType;
/** Metric type over which this class is templated */
using typename Superclass::MeasureType;
using typename Superclass::ParametersType;
/** Type for the convergence checker */
using ConvergenceMonitoringType = itk::Function::WindowConvergenceMonitoringFunction<TInternalComputationValueType>;
/** The epsilon determines the accuracy of the line search
* i.e. the energy alteration that is considered convergent.
*/
itkSetMacro(Epsilon, TInternalComputationValueType);
itkGetMacro(Epsilon, TInternalComputationValueType);
/** The upper and lower limit below determine the range
* of values over which the learning rate can be adjusted
* by the golden section line search. The update can then
* occur in the range from the smallest change given by :
* NewParams = OldParams + LowerLimit * gradient
* to the largest change given by :
* NewParams = OldParams + UpperLimit * gradient
* Reasonable values might be 0 and 2.
*/
itkSetMacro(LowerLimit, TInternalComputationValueType);
itkGetMacro(LowerLimit, TInternalComputationValueType);
itkSetMacro(UpperLimit, TInternalComputationValueType);
itkGetMacro(UpperLimit, TInternalComputationValueType);
itkSetMacro(MaximumLineSearchIterations, unsigned int);
itkGetMacro(MaximumLineSearchIterations, unsigned int);
protected:
/** Advance one Step following the gradient direction.
* Includes transform update. */
void
AdvanceOneStep() override;
/** Default constructor */
GradientDescentLineSearchOptimizerv4Template();
/** Destructor */
~GradientDescentLineSearchOptimizerv4Template() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Search the golden section.
*
* \p a and \p c are the current bounds; the minimum is between them.
* \p b is a center point.
* \c f(x) is some mathematical function elsewhere defined.
* \p a corresponds to \c x1; \p b corresponds to \c x2; \p c corresponds to \c x3.
* \c x corresponds to \c x4.
*/
TInternalComputationValueType
GoldenSectionSearch(TInternalComputationValueType a,
TInternalComputationValueType b,
TInternalComputationValueType c,
TInternalComputationValueType metricb = NumericTraits<TInternalComputationValueType>::max());
TInternalComputationValueType m_LowerLimit{};
TInternalComputationValueType m_UpperLimit{};
TInternalComputationValueType m_Phi{};
TInternalComputationValueType m_Resphi{};
TInternalComputationValueType m_Epsilon{};
/** Controls the maximum recursion depth for the golden section search */
unsigned int m_MaximumLineSearchIterations{};
/** Counts the recursion depth for the golden section search */
unsigned int m_LineSearchIterations{};
};
/** This helps to meet backward compatibility */
using GradientDescentLineSearchOptimizerv4 = GradientDescentLineSearchOptimizerv4Template<double>;
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkGradientDescentLineSearchOptimizerv4.hxx"
#endif
#endif
|