File: itkMultiGradientOptimizerv4.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (158 lines) | stat: -rw-r--r-- 5,989 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkMultiGradientOptimizerv4_h
#define itkMultiGradientOptimizerv4_h

#include "itkObjectToObjectOptimizerBase.h"
#include "itkGradientDescentOptimizerv4.h"

namespace itk
{
/**
 * \class MultiGradientOptimizerv4Template
 *  \brief Multiple gradient-based optimizers are combined in order to perform a multi-objective optimization.
 *
 *  This optimizer will do a combined gradient descent optimization using whatever metric/optimizer gradient
 *  sub-optimizers are passed to it by the user.  The learning rate or scale estimator for each sub-optimizer
 *  controls the relative weight of each metric in the optimization.  Denote the weights as \f$ w_1 \f$ and \f$ w_2 \f$
 * then the MultiGradientOptimizer will optimize \f$ \sum_i w_i Metric_i \f$ by using update rule:
 *
 *  \f[
 *    params_{new} = params_{old} + \frac{1}{N_{Metrics}} * ( \sum_i w_i Grad(Metric_i) )
 *  \f]
 *
 *  \note The scales, learning rates and weights options must be set individually for each sub-optimizer,
 *  and have no effect when set on this class.
 *
 *  The test for this class illustrates the expected behavior.
 *
 * \ingroup ITKOptimizersv4
 */
template <typename TInternalComputationValueType>
class ITK_TEMPLATE_EXPORT MultiGradientOptimizerv4Template
  : public GradientDescentOptimizerv4Template<TInternalComputationValueType>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(MultiGradientOptimizerv4Template);

  /** Standard class type aliases. */
  using Self = MultiGradientOptimizerv4Template;
  using Superclass = GradientDescentOptimizerv4Template<TInternalComputationValueType>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(MultiGradientOptimizerv4Template);

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  using LocalOptimizerType = itk::GradientDescentOptimizerv4Template<TInternalComputationValueType>;
  using LocalOptimizerPointer =
    typename itk::GradientDescentOptimizerv4Template<TInternalComputationValueType>::Pointer;
  using typename Superclass::ParametersType;
  using OptimizerType = ObjectToObjectOptimizerBaseTemplate<TInternalComputationValueType>;
  using OptimizerPointer = typename OptimizerType::Pointer;
  using OptimizersListType = std::vector<LocalOptimizerPointer>;
  using OptimizersListSizeType = typename OptimizersListType::size_type;

  /** Stop condition return string type */
  using typename Superclass::StopConditionReturnStringType;

  /** Stop condition internal string type */
  using typename Superclass::StopConditionDescriptionType;

  /** It should be possible to derive the internal computation type from the class object. */
  using InternalComputationValueType = TInternalComputationValueType;

  /** Metric type over which this class is templated */
  using typename Superclass::MetricType;
  using MetricTypePointer = typename MetricType::Pointer;

  /** Derivative type */
  using DerivativeType = typename MetricType::DerivativeType;

  /** Measure type */
  using typename Superclass::MeasureType;
  using MetricValuesListType = std::vector<MeasureType>;

  /** Get stop condition enum */
  const StopConditionObjectToObjectOptimizerEnum &
  GetStopCondition() const override
  {
    return this->m_StopCondition;
  }

  /** Begin the optimization */
  void
  StartOptimization(bool doOnlyInitialization = false) override;

  /** Stop optimization. The object is left in a state so the
   * optimization can be resumed by calling ResumeOptimization. */
  void
  StopOptimization() override;

  /** Resume the optimization. Can be called after StopOptimization to
   * resume. The bulk of the optimization work loop is here. */
  void
  ResumeOptimization() override;

  /** Get the reason for termination */
  const StopConditionReturnStringType
  GetStopConditionDescription() const override;

  /** Get the list of optimizers currently held. */
  OptimizersListType &
  GetOptimizersList();

  /** Set the list of optimizers to combine. */
  void
  SetOptimizersList(OptimizersListType & p);

  /** Get the list of metric values that we produced after the multi-objective search. */
  const MetricValuesListType &
  GetMetricValuesList() const;

protected:
  /** Default constructor */
  MultiGradientOptimizerv4Template();
  ~MultiGradientOptimizerv4Template() override = default;

  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /* Common variables for optimization control and reporting */
  bool                                     m_Stop{ false };
  StopConditionObjectToObjectOptimizerEnum m_StopCondition{};
  StopConditionDescriptionType             m_StopConditionDescription{};
  OptimizersListType                       m_OptimizersList{};
  MetricValuesListType                     m_MetricValuesList{};
  MeasureType                              m_MinimumMetricValue{};
  MeasureType                              m_MaximumMetricValue{};
};

/** This helps to meet backward compatibility */
using MultiGradientOptimizerv4 = MultiGradientOptimizerv4Template<double>;

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkMultiGradientOptimizerv4.hxx"
#endif

#endif