File: itkMultiStartOptimizerv4.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (188 lines) | stat: -rw-r--r-- 7,528 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkMultiStartOptimizerv4_h
#define itkMultiStartOptimizerv4_h

#include "itkObjectToObjectOptimizerBase.h"
#include "itkGradientDescentOptimizerv4.h"

namespace itk
{

/**
 * \class MultiStartOptimizerv4Template
 *  \brief Multi-start searches over input parameters and returns the best metric value
 *
 *   The multi-start algorithm performs gradient descent from N (large) number of starting points and
 *   returns the best solution. Ideal start points would sample the solution space almost uniformly, thus,
 *   in theory, this is a global optimizer.  In this implementation, the quality of the optimization
 *   depends on the parameter space samples that the user inputs to the optimizer.  Multi-start can be
 *   modified in numerous ways to improve robustness of standard approaches.  These improvements usually
 *   focus modifying the parameter sample space.  This is why we place the burden on the user to provide
 *   the parameter samples over which to optimize.
 *
 * \ingroup ITKOptimizersv4
 */
template <typename TInternalComputationValueType>
class ITK_TEMPLATE_EXPORT MultiStartOptimizerv4Template
  : public ObjectToObjectOptimizerBaseTemplate<TInternalComputationValueType>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(MultiStartOptimizerv4Template);

  /** Standard class type aliases. */
  using Self = MultiStartOptimizerv4Template;
  using Superclass = ObjectToObjectOptimizerBaseTemplate<TInternalComputationValueType>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(MultiStartOptimizerv4Template);

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  using typename Superclass::ParametersType;
  using ParametersListType = std::vector<ParametersType>;
  using ParameterListSizeType = typename ParametersListType::size_type;

  using OptimizerType = ObjectToObjectOptimizerBaseTemplate<TInternalComputationValueType>;
  using OptimizerPointer = typename OptimizerType::Pointer;
  using LocalOptimizerType = typename itk::GradientDescentOptimizerv4Template<TInternalComputationValueType>;
  using LocalOptimizerPointer = typename LocalOptimizerType::Pointer;

  /** Enables backwards compatibility for enum values */
#if !defined(ITK_LEGACY_REMOVE)
  // We need to expose the enum values at the class level
  // for backwards compatibility
  static constexpr itk::StopConditionObjectToObjectOptimizerEnum MAXIMUM_NUMBER_OF_ITERATIONS =
    itk::StopConditionObjectToObjectOptimizerEnum::MAXIMUM_NUMBER_OF_ITERATIONS;
  static constexpr itk::StopConditionObjectToObjectOptimizerEnum COSTFUNCTION_ERROR =
    itk::StopConditionObjectToObjectOptimizerEnum::COSTFUNCTION_ERROR;
  static constexpr itk::StopConditionObjectToObjectOptimizerEnum UPDATE_PARAMETERS_ERROR =
    itk::StopConditionObjectToObjectOptimizerEnum::UPDATE_PARAMETERS_ERROR;
  static constexpr itk::StopConditionObjectToObjectOptimizerEnum STEP_TOO_SMALL =
    itk::StopConditionObjectToObjectOptimizerEnum::STEP_TOO_SMALL;
  static constexpr itk::StopConditionObjectToObjectOptimizerEnum CONVERGENCE_CHECKER_PASSED =
    itk::StopConditionObjectToObjectOptimizerEnum::CONVERGENCE_CHECKER_PASSED;
  static constexpr itk::StopConditionObjectToObjectOptimizerEnum OTHER_ERROR =
    itk::StopConditionObjectToObjectOptimizerEnum::OTHER_ERROR;
#endif

  /** Stop condition return string type */
  using typename Superclass::StopConditionReturnStringType;

  /** Stop condition internal string type */
  using typename Superclass::StopConditionDescriptionType;
  /** Stop condition return string type */

  /** It should be possible to derive the internal computation type from the class object. */
  using InternalComputationValueType = TInternalComputationValueType;

  /** Metric type over which this class is templated */
  using typename Superclass::MetricType;
  using MetricTypePointer = typename MetricType::Pointer;

  /** Derivative type */
  using DerivativeType = typename MetricType::DerivativeType;

  /** Measure type */
  using typename Superclass::MeasureType;
  using MetricValuesListType = std::vector<MeasureType>;

  /** Get stop condition enum */
  itkGetConstReferenceMacro(StopCondition, StopConditionObjectToObjectOptimizerEnum);

  /** Create an instance of the local optimizer */
  void
  InstantiateLocalOptimizer();

  /** Begin the optimization */
  void
  StartOptimization(bool doOnlyInitialization = false) override;

  /** Stop optimization. The object is left in a state so the
   * optimization can be resumed by calling ResumeOptimization. */
  virtual void
  StopOptimization();

  /** Resume the optimization. Can be called after StopOptimization to
   * resume. The bulk of the optimization work loop is here. */
  virtual void
  ResumeOptimization();

  /** Get the reason for termination */
  const StopConditionReturnStringType
  GetStopConditionDescription() const override;

  /** Get the list of parameters over which to search.  */
  ParametersListType &
  GetParametersList();

  /** Set the list of parameters over which to search. */
  void
  SetParametersList(ParametersListType & p);

  /** Get the list of metric values that we produced after the multi-start search. */
  const MetricValuesListType &
  GetMetricValuesList() const;

  /** Return the parameters from the best visited position. */
  ParametersType
  GetBestParameters();

  /** Set/Get the optimizer. */
  itkSetObjectMacro(LocalOptimizer, OptimizerType);
  itkGetModifiableObjectMacro(LocalOptimizer, OptimizerType);

  inline ParameterListSizeType
  GetBestParametersIndex()
  {
    return this->m_BestParametersIndex;
  }

protected:
  /** Default constructor */
  MultiStartOptimizerv4Template();
  ~MultiStartOptimizerv4Template() override = default;

  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /* Common variables for optimization control and reporting */
  bool                                     m_Stop{ false };
  StopConditionObjectToObjectOptimizerEnum m_StopCondition{};
  StopConditionDescriptionType             m_StopConditionDescription{};
  ParametersListType                       m_ParametersList{};
  MetricValuesListType                     m_MetricValuesList{};
  MeasureType                              m_MinimumMetricValue{};
  MeasureType                              m_MaximumMetricValue{};
  ParameterListSizeType                    m_BestParametersIndex{};
  OptimizerPointer                         m_LocalOptimizer{};
};

/** This helps to meet backward compatibility */
using MultiStartOptimizerv4 = MultiStartOptimizerv4Template<double>;

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkMultiStartOptimizerv4.hxx"
#endif

#endif