1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkMultiStartOptimizerv4_h
#define itkMultiStartOptimizerv4_h
#include "itkObjectToObjectOptimizerBase.h"
#include "itkGradientDescentOptimizerv4.h"
namespace itk
{
/**
* \class MultiStartOptimizerv4Template
* \brief Multi-start searches over input parameters and returns the best metric value
*
* The multi-start algorithm performs gradient descent from N (large) number of starting points and
* returns the best solution. Ideal start points would sample the solution space almost uniformly, thus,
* in theory, this is a global optimizer. In this implementation, the quality of the optimization
* depends on the parameter space samples that the user inputs to the optimizer. Multi-start can be
* modified in numerous ways to improve robustness of standard approaches. These improvements usually
* focus modifying the parameter sample space. This is why we place the burden on the user to provide
* the parameter samples over which to optimize.
*
* \ingroup ITKOptimizersv4
*/
template <typename TInternalComputationValueType>
class ITK_TEMPLATE_EXPORT MultiStartOptimizerv4Template
: public ObjectToObjectOptimizerBaseTemplate<TInternalComputationValueType>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(MultiStartOptimizerv4Template);
/** Standard class type aliases. */
using Self = MultiStartOptimizerv4Template;
using Superclass = ObjectToObjectOptimizerBaseTemplate<TInternalComputationValueType>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(MultiStartOptimizerv4Template);
/** Method for creation through the object factory. */
itkNewMacro(Self);
using typename Superclass::ParametersType;
using ParametersListType = std::vector<ParametersType>;
using ParameterListSizeType = typename ParametersListType::size_type;
using OptimizerType = ObjectToObjectOptimizerBaseTemplate<TInternalComputationValueType>;
using OptimizerPointer = typename OptimizerType::Pointer;
using LocalOptimizerType = typename itk::GradientDescentOptimizerv4Template<TInternalComputationValueType>;
using LocalOptimizerPointer = typename LocalOptimizerType::Pointer;
/** Enables backwards compatibility for enum values */
#if !defined(ITK_LEGACY_REMOVE)
// We need to expose the enum values at the class level
// for backwards compatibility
static constexpr itk::StopConditionObjectToObjectOptimizerEnum MAXIMUM_NUMBER_OF_ITERATIONS =
itk::StopConditionObjectToObjectOptimizerEnum::MAXIMUM_NUMBER_OF_ITERATIONS;
static constexpr itk::StopConditionObjectToObjectOptimizerEnum COSTFUNCTION_ERROR =
itk::StopConditionObjectToObjectOptimizerEnum::COSTFUNCTION_ERROR;
static constexpr itk::StopConditionObjectToObjectOptimizerEnum UPDATE_PARAMETERS_ERROR =
itk::StopConditionObjectToObjectOptimizerEnum::UPDATE_PARAMETERS_ERROR;
static constexpr itk::StopConditionObjectToObjectOptimizerEnum STEP_TOO_SMALL =
itk::StopConditionObjectToObjectOptimizerEnum::STEP_TOO_SMALL;
static constexpr itk::StopConditionObjectToObjectOptimizerEnum CONVERGENCE_CHECKER_PASSED =
itk::StopConditionObjectToObjectOptimizerEnum::CONVERGENCE_CHECKER_PASSED;
static constexpr itk::StopConditionObjectToObjectOptimizerEnum OTHER_ERROR =
itk::StopConditionObjectToObjectOptimizerEnum::OTHER_ERROR;
#endif
/** Stop condition return string type */
using typename Superclass::StopConditionReturnStringType;
/** Stop condition internal string type */
using typename Superclass::StopConditionDescriptionType;
/** Stop condition return string type */
/** It should be possible to derive the internal computation type from the class object. */
using InternalComputationValueType = TInternalComputationValueType;
/** Metric type over which this class is templated */
using typename Superclass::MetricType;
using MetricTypePointer = typename MetricType::Pointer;
/** Derivative type */
using DerivativeType = typename MetricType::DerivativeType;
/** Measure type */
using typename Superclass::MeasureType;
using MetricValuesListType = std::vector<MeasureType>;
/** Get stop condition enum */
itkGetConstReferenceMacro(StopCondition, StopConditionObjectToObjectOptimizerEnum);
/** Create an instance of the local optimizer */
void
InstantiateLocalOptimizer();
/** Begin the optimization */
void
StartOptimization(bool doOnlyInitialization = false) override;
/** Stop optimization. The object is left in a state so the
* optimization can be resumed by calling ResumeOptimization. */
virtual void
StopOptimization();
/** Resume the optimization. Can be called after StopOptimization to
* resume. The bulk of the optimization work loop is here. */
virtual void
ResumeOptimization();
/** Get the reason for termination */
const StopConditionReturnStringType
GetStopConditionDescription() const override;
/** Get the list of parameters over which to search. */
ParametersListType &
GetParametersList();
/** Set the list of parameters over which to search. */
void
SetParametersList(ParametersListType & p);
/** Get the list of metric values that we produced after the multi-start search. */
const MetricValuesListType &
GetMetricValuesList() const;
/** Return the parameters from the best visited position. */
ParametersType
GetBestParameters();
/** Set/Get the optimizer. */
itkSetObjectMacro(LocalOptimizer, OptimizerType);
itkGetModifiableObjectMacro(LocalOptimizer, OptimizerType);
inline ParameterListSizeType
GetBestParametersIndex()
{
return this->m_BestParametersIndex;
}
protected:
/** Default constructor */
MultiStartOptimizerv4Template();
~MultiStartOptimizerv4Template() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/* Common variables for optimization control and reporting */
bool m_Stop{ false };
StopConditionObjectToObjectOptimizerEnum m_StopCondition{};
StopConditionDescriptionType m_StopConditionDescription{};
ParametersListType m_ParametersList{};
MetricValuesListType m_MetricValuesList{};
MeasureType m_MinimumMetricValue{};
MeasureType m_MaximumMetricValue{};
ParameterListSizeType m_BestParametersIndex{};
OptimizerPointer m_LocalOptimizer{};
};
/** This helps to meet backward compatibility */
using MultiStartOptimizerv4 = MultiStartOptimizerv4Template<double>;
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkMultiStartOptimizerv4.hxx"
#endif
#endif
|