File: itkObjectToObjectMetric.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (380 lines) | stat: -rw-r--r-- 15,964 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkObjectToObjectMetric_h
#define itkObjectToObjectMetric_h


#include "itkObjectToObjectMetricBase.h"

#include "itkDisplacementFieldTransform.h"
#include "itkImage.h"
#include "itkObject.h"
#include "itkPointSet.h"
#include "itkTransform.h"

namespace itk
{

/**
 * \class ObjectToObjectMetric
 * \brief Computes similarity between regions of two objects.
 *
 * This class is templated over the dimensionality of the two input objects.
 * This is the abstract templated base class for a hierarchy of similarity metrics
 * that may, in derived classes, operate on meshes, images, etc.
 * This class computes a value that measures the similarity between the two
 * objects.
 *
 * Derived classes must provide implementations for:
 *  GetValue
 *  GetDerivative
 *  GetValueAndDerivative
 *  SupportsArbitraryVirtualDomainSamples
 *
 * Similarity is evaluated using fixed and moving transforms.
 * Both transforms are initialized to an IdentityTransform, and can be
 * set by the user using SetFixedTransform() and SetMovingTransform().
 *
 * Virtual Domain
 *
 * This class uses a virtual reference space. This space defines the resolution
 * at which the evaluation is performed, as well as the physical coordinate
 * system. This is useful for unbiased registration. The virtual domain is stored
 * in the m_VirtualDomain member, but this is subject to change so the convenience
 * methods GetVirtualSpacing(), GetVirtualDirection() and GetVirtualOrigin() should
 * be used whenever possible to retrieve virtual domain information. The region over which
 * metric evaluation is performed is taken from the virtual image buffered region.
 *
 * The user can define a virtual domain by calling either
 * \c SetVirtualDomain or \c SetVirtualDomainFromImage. See these
 * methods for details. Derived classes may automatically assign a virtual domain
 * if the user has not assigned one by initialization time.
 *
 * If the virtual domain is left undefined by the user and by derived classes,
 * then unit or zero values are returned for GetVirtualSpacing(),
 * GetVirtualDirection() and GetVirtualOrigin(), as appropriate. The virtual region is left
 * undefined and an attempt to retrieve it via GetVirtualRegion() will generate an exception.
 * The m_VirtualImage member will be nullptr.
 *
 * During evaluation, derived classes should verify that points are within the virtual domain
 * and thus valid, as appropriate for the needs of the metric. When points are deemed invalid
 * the number of valid points returned by GetNumberOfValidPoints() should reflect this.
 *
 * \note Transform Optimization
 * This hierarchy currently assumes only the moving transform is 'active',
 * i.e. only the moving transform is being optimized when used in an optimizer.
 * Methods relevant to transform optimization such as GetNumberOfParameters(),
 * UpdateTransformParameters() are passed on to the active transform.
 * The eventual goal however is to allow for either moving, fixed or both
 * transforms to be active within a single metric.
 *
 * \ingroup ITKOptimizersv4
 */
template <unsigned int TFixedDimension,
          unsigned int TMovingDimension,
          typename TVirtualImage = Image<double, TFixedDimension>,
          typename TParametersValueType = double>
class ITK_TEMPLATE_EXPORT ObjectToObjectMetric : public ObjectToObjectMetricBaseTemplate<TParametersValueType>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(ObjectToObjectMetric);

  /** Standard class type aliases. */
  using Self = ObjectToObjectMetric;
  using Superclass = ObjectToObjectMetricBaseTemplate<TParametersValueType>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(ObjectToObjectMetric);

  /** Type used for representing object components  */
  using CoordinateRepresentationType = TParametersValueType;

  /** Type for internal computations */
  using InternalComputationValueType = TParametersValueType;

  /**  Type of the measure. */
  using typename Superclass::MeasureType;

  /**  Type of object. */
  using ObjectType = typename Superclass::Object;

  /**  Type of the derivative. */
  using typename Superclass::DerivativeType;
  using typename Superclass::DerivativeValueType;

  /**  Type of the parameters. */
  using typename Superclass::ParametersType;
  using typename Superclass::NumberOfParametersType;

  using typename Superclass::GradientSourceEnum;

  /** Dimension type */
  using DimensionType = SizeValueType;

  /** Object dimension accessors */
  static constexpr DimensionType FixedDimension = TFixedDimension;
  static constexpr DimensionType MovingDimension = TMovingDimension;
  static constexpr DimensionType VirtualDimension = TVirtualImage::ImageDimension;

  /** Types for the virtual domain */
  using VirtualImageType = TVirtualImage;
  using VirtualImagePointer = typename VirtualImageType::Pointer;
  using VirtualImageConstPointer = typename VirtualImageType::ConstPointer;
  using VirtualPixelType = typename VirtualImageType::PixelType;
  using VirtualRegionType = typename VirtualImageType::RegionType;
  using VirtualSizeType = typename VirtualRegionType::SizeType;
  using VirtualSpacingType = typename VirtualImageType::SpacingType;
  using VirtualOriginType = typename VirtualImageType::PointType;
  using VirtualPointType = typename VirtualImageType::PointType;
  using VirtualDirectionType = typename VirtualImageType::DirectionType;
  using VirtualRadiusType = typename VirtualImageType::SizeType;
  using VirtualIndexType = typename VirtualImageType::IndexType;

  /** Point set in the virtual domain */
  using VirtualPointSetType = PointSet<VirtualPixelType, Self::VirtualDimension>;
  using VirtualPointSetPointer = typename VirtualPointSetType::Pointer;

  /**  Type of the Transform Base classes */
  using MovingTransformType = Transform<TParametersValueType, TVirtualImage::ImageDimension, TMovingDimension>;
  using FixedTransformType = Transform<TParametersValueType, TVirtualImage::ImageDimension, TFixedDimension>;

  using FixedTransformPointer = typename FixedTransformType::Pointer;
  using FixedInputPointType = typename FixedTransformType::InputPointType;
  using FixedOutputPointType = typename FixedTransformType::OutputPointType;
  using FixedTransformParametersType = typename FixedTransformType::ParametersType;

  using MovingTransformPointer = typename MovingTransformType::Pointer;
  using MovingInputPointType = typename MovingTransformType::InputPointType;
  using MovingOutputPointType = typename MovingTransformType::OutputPointType;
  using MovingTransformParametersType = typename MovingTransformType::ParametersType;

  /** Jacobian type. This is the same for all transforms */
  using JacobianType = typename FixedTransformType::JacobianType;
  using FixedTransformJacobianType = typename FixedTransformType::JacobianType;
  using MovingTransformJacobianType = typename MovingTransformType::JacobianType;

  /** DisplacementFieldTransform types for working with local-support transforms */
  using MovingDisplacementFieldTransformType =
    DisplacementFieldTransform<CoordinateRepresentationType, Self::MovingDimension>;

  void
  Initialize() override;

  NumberOfParametersType
  GetNumberOfParameters() const override;
  NumberOfParametersType
  GetNumberOfLocalParameters() const override;
  void
  SetParameters(ParametersType & params) override;
  const ParametersType &
  GetParameters() const override;
  bool
  HasLocalSupport() const override;
  void
  UpdateTransformParameters(const DerivativeType & derivative, TParametersValueType factor) override;

  /** Connect the fixed transform. */
  itkSetObjectMacro(FixedTransform, FixedTransformType);

  /** Get a pointer to the fixed transform.  */
  itkGetModifiableObjectMacro(FixedTransform, FixedTransformType);

  /** Connect the moving transform. */
  itkSetObjectMacro(MovingTransform, MovingTransformType);

  /** Get a pointer to the moving transform.  */
  itkGetModifiableObjectMacro(MovingTransform, MovingTransformType);

  /** Connect the moving transform using a backwards-compatible name.
   * This assigns the input transform to the moving transform. */
  void
  SetTransform(MovingTransformType * transform);

  /** Get the moving transform using a backwards-compatible name */
  const MovingTransformType *
  GetTransform();

  /** Get the number of valid points after a call to evaluate the
   * metric. */
  itkGetConstMacro(NumberOfValidPoints, SizeValueType);

  /** Define the virtual reference space. This space defines the resolution
   * at which the registration is performed as well as the physical coordinate
   * system.  Useful for unbiased registration.
   * This method will allocate \c m_VirtualImage with the passed
   * information, with the pixel buffer left unallocated.
   * Metric evaluation will be performed within the constraints of the virtual
   * domain depending on implementation in derived classes.
   * A default domain is created during initialization in derived
   * classes according to their need.
   * \param spacing   spacing
   * \param origin    origin
   * \param direction direction
   * \param region    region is used to set all image regions.
   *
   * \sa SetVirtualDomainFromImage
   */
  void
  SetVirtualDomain(const VirtualSpacingType &   spacing,
                   const VirtualOriginType &    origin,
                   const VirtualDirectionType & direction,
                   const VirtualRegionType &    region);

  /** Use a virtual domain image to define the virtual reference space.
   * \sa SetVirtualDomain */
  void
  SetVirtualDomainFromImage(const VirtualImageType * virtualImage);

  /** Returns a flag. True if arbitrary virtual domain points will
   *  always correspond to data points. False if not. For example,
   *  point-set metrics return false because only some virtual domain
   *  points will correspond to points within the point sets. */
  virtual bool
  SupportsArbitraryVirtualDomainSamples() const = 0;

  /** Return a timestamp relating to the virtual domain.
   * This returns the greater of the metric timestamp and the
   * virtual domain image timestamp. This allows us to
   * capture if the virtual domain image is changed by the user
   * after being assigned to the metric. */
  virtual const TimeStamp &
  GetVirtualDomainTimeStamp() const;

  /** Accessors for the virtual domain spacing.
   *  Returns unit spacing if a virtual domain is undefined. */
  VirtualSpacingType
  GetVirtualSpacing() const;

  /** Accessor for virtual domain origin.
   *  Returns zero origin if a virtual domain is undefined. */
  VirtualOriginType
  GetVirtualOrigin() const;

  /** Accessor for virtual domain direction.
   *  Returns unit direction if a virtual domain is undefined. */
  VirtualDirectionType
  GetVirtualDirection() const;

  /** Return the virtual domain region, which is retrieved from
   *  the m_VirtualImage buffered region. */
  const VirtualRegionType &
  GetVirtualRegion() const;

  itkGetModifiableObjectMacro(VirtualImage, VirtualImageType);

  /** Computes an offset for accessing parameter data from a virtual domain
   * index. Relevant for metrics with local-support transforms, to access
   * parameter or derivative memory that is stored linearly in a 1D array.
   * The result is the offset (1D array index) to the first of N parameters
   * corresponding to the given virtual index, where N is the number of
   * local parameters.
   * \param index the virtual index to convert
   * \param numberOfLocalParameters corresponding to the transform
   **/
  OffsetValueType
  ComputeParameterOffsetFromVirtualIndex(const VirtualIndexType &       index,
                                         const NumberOfParametersType & numberOfLocalParameters) const;

  /** Computes an offset for accessing parameter data from a virtual domain
   * point. Relevant for metrics with local-support transforms, to access
   * parameter or derivative memory that is stored linearly in a 1D array.
   * The result is the offset (1D array index) to the first of N parameters
   * corresponding to the given virtual index, where N is the number of
   * local parameters.
   * \param point the virtual point to convert
   * \param numberOfLocalParameters corresponding to the transform
   **/
  OffsetValueType
  ComputeParameterOffsetFromVirtualPoint(const VirtualPointType &       point,
                                         const NumberOfParametersType & numberOfLocalParameters) const;

  /** Determine if a point is within the virtual domain.
   * \note Returns true if the virtual domain has not been defined. This
   * allows, for example, use in point set metrics where the virtual domain
   * is implicitly defined by the point sets and transforms. */
  bool
  IsInsideVirtualDomain(const VirtualPointType & point) const;
  bool
  IsInsideVirtualDomain(const VirtualIndexType & index) const;

  using MetricCategoryType = typename Superclass::MetricCategoryEnum;

  /** Get metric category */
  MetricCategoryType
  GetMetricCategory() const override
  {
    return MetricCategoryType::OBJECT_METRIC;
  }

protected:
  ObjectToObjectMetric();
  ~ObjectToObjectMetric() override = default;

  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Verify that virtual domain and displacement field are the same size
   * and in the same physical space. */
  virtual void
  VerifyDisplacementFieldSizeAndPhysicalSpace();

  bool
  TransformPhysicalPointToVirtualIndex(const VirtualPointType &, VirtualIndexType &) const;
  void
  TransformVirtualIndexToPhysicalPoint(const VirtualIndexType &, VirtualPointType &) const;

  /** If the moving transform is a DisplacementFieldTransform, return it.
   *  If the moving transform is a CompositeTransform, the routine will check if the
   *  first (last to be added) transform is a DisplacementFieldTransform, and if so return it.
   *  Otherwise, return nullptr. */
  const MovingDisplacementFieldTransformType *
  GetMovingDisplacementFieldTransform() const;

  /** Check that the number of valid points is above a default
   * minimum (zero). If not, then return false, and assign to 'value' a value
   * indicating insufficient valid points were found during evaluation, and set
   * the derivative to zero. A warning is also output.
   * This functionality is provided as a separate method so derived classes
   * can use it without hardcoding the details. */
  bool
  VerifyNumberOfValidPoints(MeasureType & value, DerivativeType & derivative) const;

  /** Transforms */
  FixedTransformPointer  m_FixedTransform{};
  MovingTransformPointer m_MovingTransform{};

  VirtualImagePointer m_VirtualImage{};

  /** Flag that is set when user provides a virtual domain, either via
   * SetVirtualDomain() or SetVirtualDomainFromImage(). */
  bool m_UserHasSetVirtualDomain{};

  /** Store the number of points used during most recent value and derivative
   * calculation.
   * \sa VerifyNumberOfValidPoints() */
  mutable SizeValueType m_NumberOfValidPoints{ 0 };
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkObjectToObjectMetric.hxx"
#endif

#endif