File: itkRegistrationParameterScalesEstimator.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (659 lines) | stat: -rw-r--r-- 19,998 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkRegistrationParameterScalesEstimator_hxx
#define itkRegistrationParameterScalesEstimator_hxx


#include "itkCompositeTransform.h"
#include "itkPointSet.h"
#include "itkObjectToObjectMetric.h"
#include "itkPrintHelper.h"
#include <algorithm> // For min.

namespace itk
{

template <typename TMetric>
RegistrationParameterScalesEstimator<TMetric>::RegistrationParameterScalesEstimator()
{
  // estimate parameter scales of the moving transform
  this->m_TransformForward = true;

  // number for random sampling
  this->m_NumberOfRandomSamples = 0;

  // default sampling strategy
  this->m_SamplingStrategy = SamplingStrategyEnum::FullDomainSampling;

  // the default radius of the central region for sampling
  this->m_CentralRegionRadius = 5;

  // the metric object must be set before EstimateScales()
}

template <typename TMetric>
auto
RegistrationParameterScalesEstimator<TMetric>::EstimateMaximumStepSize() -> FloatType
{
  this->CheckAndSetInputs();

  const VirtualSpacingType & spacing = this->m_Metric->GetVirtualSpacing();

  const SizeValueType dim = this->GetDimension();

  FloatType minSpacing = NumericTraits<FloatType>::max();

  for (SizeValueType d = 0; d < dim; ++d)
  {
    minSpacing = std::min<FloatType>(minSpacing, spacing[d]);
  }

  return minSpacing;
}

template <typename TMetric>
bool
RegistrationParameterScalesEstimator<TMetric>::CheckAndSetInputs()
{
  if (m_Metric.IsNull())
  {
    itkExceptionMacro("RegistrationParameterScalesEstimator: the metric is nullptr");
  }

  if (this->m_Metric->GetMovingTransform() == nullptr)
  {
    itkExceptionMacro("RegistrationParameterScalesEstimator: this->m_MovingTransform in the metric is nullptr.");
  }
  if (this->m_Metric->GetFixedTransform() == nullptr)
  {
    itkExceptionMacro("RegistrationParameterScalesEstimator: this->m_FixedTransform in the metric is nullptr.");
  }

  return true;
}

template <typename TMetric>
const TransformBaseTemplate<typename TMetric::MeasureType> *
RegistrationParameterScalesEstimator<TMetric>::GetTransform()
{
  if (m_TransformForward)
  {
    return this->m_Metric->GetMovingTransform();
  }
  else
  {
    return this->m_Metric->GetFixedTransform();
  }
}

template <typename TMetric>
itk::SizeValueType
RegistrationParameterScalesEstimator<TMetric>::GetDimension()
{
  if (m_TransformForward)
  {
    return MovingDimension;
  }
  else
  {
    return FixedDimension;
  }
}

template <typename TMetric>
bool
RegistrationParameterScalesEstimator<TMetric>::IsDisplacementFieldTransform()
{
  if (this->m_TransformForward && this->m_Metric->GetMovingTransform()->GetTransformCategory() ==
                                    MovingTransformType::TransformCategoryEnum::DisplacementField)
  {
    return true;
  }
  else if (!this->m_TransformForward && this->m_Metric->GetFixedTransform()->GetTransformCategory() ==
                                          FixedTransformType::TransformCategoryEnum::DisplacementField)
  {
    return true;
  }
  return false;
}

template <typename TMetric>
bool
RegistrationParameterScalesEstimator<TMetric>::IsBSplineTransform()
{
  bool isBSplineTransform = false;

  if (this->m_TransformForward && this->m_Metric->GetMovingTransform()->GetTransformCategory() ==
                                    MovingTransformType::TransformCategoryEnum::BSpline)
  {
    isBSplineTransform = true;
  }
  else if (!this->m_TransformForward && this->m_Metric->GetFixedTransform()->GetTransformCategory() ==
                                          FixedTransformType::TransformCategoryEnum::BSpline)
  {
    isBSplineTransform = true;
  }

  // We need to check for the case where the fixed/moving transform is
  // a composite transform with optimizing B-spline transforms.
  // The CompositeTransform class function GetTransformCategory() handles
  // this scenario for displacement field transforms but we need to duplicate
  // the analogous b-spline case here.

  if (!isBSplineTransform)
  {
    if (this->m_TransformForward)
    {
      using CompositeTransformType = CompositeTransform<FloatType, MovingDimension>;
      typename CompositeTransformType::Pointer compositeTransform =
        dynamic_cast<CompositeTransformType *>(const_cast<MovingTransformType *>(this->m_Metric->GetMovingTransform()));

      if (compositeTransform)
      {
        isBSplineTransform = true;
        for (long tind = static_cast<long>(compositeTransform->GetNumberOfTransforms()) - 1; tind >= 0; tind--)
        {
          if (compositeTransform->GetNthTransformToOptimize(tind) &&
              (compositeTransform->GetNthTransformConstPointer(tind)->GetTransformCategory() !=
               MovingTransformType::TransformCategoryEnum::BSpline))
          {
            isBSplineTransform = false;
            break;
          }
        }
      }
    }
    else // !this->m_TransformForward
    {
      using CompositeTransformType = CompositeTransform<FloatType, FixedDimension>;
      typename CompositeTransformType::Pointer compositeTransform =
        dynamic_cast<CompositeTransformType *>(const_cast<FixedTransformType *>(this->m_Metric->GetFixedTransform()));

      if (compositeTransform)
      {
        isBSplineTransform = true;
        for (long tind = static_cast<long>(compositeTransform->GetNumberOfTransforms()) - 1; tind >= 0; tind--)
        {
          if (compositeTransform->GetNthTransformToOptimize(tind) &&
              (compositeTransform->GetNthTransformConstPointer(tind)->GetTransformCategory() !=
               FixedTransformType::TransformCategoryEnum::BSpline))
          {
            isBSplineTransform = false;
            break;
          }
        }
      }
    }
  }

  return isBSplineTransform;
}


template <typename TMetric>
bool
RegistrationParameterScalesEstimator<TMetric>::TransformHasLocalSupportForScalesEstimation()
{
  if (this->IsDisplacementFieldTransform() || this->IsBSplineTransform())
  {
    return true;
  }
  else
  {
    return false;
  }
}

template <typename TMetric>
SizeValueType
RegistrationParameterScalesEstimator<TMetric>::GetNumberOfLocalParameters()
{
  if (this->GetTransformForward())
  {
    return this->m_Metric->GetMovingTransform()->GetNumberOfLocalParameters();
  }
  else
  {
    return this->m_Metric->GetFixedTransform()->GetNumberOfLocalParameters();
  }
}

template <typename TMetric>
void
RegistrationParameterScalesEstimator<TMetric>::UpdateTransformParameters(const ParametersType & deltaParameters)
{
  // Apply the delta parameters to the transform
  if (this->m_TransformForward)
  {
    typename MovingTransformType::Pointer movingTransform =
      const_cast<MovingTransformType *>(this->m_Metric->GetMovingTransform());
    auto & step = const_cast<ParametersType &>(deltaParameters);
    movingTransform->UpdateTransformParameters(step);
  }
  else
  {
    typename FixedTransformType::Pointer fixedTransform =
      const_cast<FixedTransformType *>(this->m_Metric->GetFixedTransform());
    auto & step = const_cast<ParametersType &>(deltaParameters);
    fixedTransform->UpdateTransformParameters(step);
  }
}

template <typename TMetric>
template <typename TTargetPointType>
void
RegistrationParameterScalesEstimator<TMetric>::TransformPoint(const VirtualPointType & point,
                                                              TTargetPointType &       mappedPoint)
{
  if (this->GetTransformForward())
  {
    mappedPoint = this->m_Metric->GetMovingTransform()->TransformPoint(point);
  }
  else
  {
    mappedPoint = this->m_Metric->GetFixedTransform()->TransformPoint(point);
  }
}

template <typename TMetric>
void
RegistrationParameterScalesEstimator<TMetric>::ComputeSquaredJacobianNorms(const VirtualPointType & point,
                                                                           ParametersType &         squareNorms)
{
  const SizeValueType numPara = this->GetNumberOfLocalParameters();
  const SizeValueType dim = this->GetDimension();
  JacobianType        jacobian(dim, numPara);

  if (this->GetTransformForward())
  {
    this->m_Metric->GetMovingTransform()->ComputeJacobianWithRespectToParameters(point, jacobian);

    for (SizeValueType p = 0; p < numPara; ++p)
    {
      squareNorms[p] = typename ParametersType::ValueType{};
      for (SizeValueType d = 0; d < dim; ++d)
      {
        squareNorms[p] += jacobian[d][p] * jacobian[d][p];
      }
    }
  }
  else
  {
    this->m_Metric->GetFixedTransform()->ComputeJacobianWithRespectToParameters(point, jacobian);

    for (SizeValueType p = 0; p < numPara; ++p)
    {
      squareNorms[p] = typename ParametersType::ValueType{};
      for (SizeValueType d = 0; d < dim; ++d)
      {
        squareNorms[p] += jacobian[d][p] * jacobian[d][p];
      }
    }
  }
}

template <typename TMetric>
void
RegistrationParameterScalesEstimator<TMetric>::SampleVirtualDomain()
{
  if (!(this->m_SamplingTime < this->GetTimeStamp()) &&
      !(this->m_SamplingTime < this->m_Metric->GetVirtualDomainTimeStamp()))
  {
    return;
  }

  if (!this->m_Metric->SupportsArbitraryVirtualDomainSamples() && !this->m_VirtualDomainPointSet)
  {
    itkExceptionMacro(" The assigned metric does not support aribitrary virtual domain sampling, "
                      " yet this->m_VirtualDomainPointSet has not been assigned. ");
  }

  if (m_SamplingStrategy == SamplingStrategyEnum::VirtualDomainPointSetSampling)
  {
    this->SampleVirtualDomainWithPointSet();
  }
  else if (m_SamplingStrategy == SamplingStrategyEnum::CornerSampling)
  {
    this->SampleVirtualDomainWithCorners();
  }
  else if (m_SamplingStrategy == SamplingStrategyEnum::RandomSampling)
  {
    this->SampleVirtualDomainRandomly();
  }
  else if (m_SamplingStrategy == SamplingStrategyEnum::CentralRegionSampling)
  {
    this->SampleVirtualDomainWithCentralRegion();
  }
  else
  {
    this->SampleVirtualDomainFully();
  }

  // Sanity check
  if (this->m_SamplePoints.empty())
  {
    itkExceptionMacro("No sample points were created.");
  }

  this->Modified();
  this->m_SamplingTime = this->GetTimeStamp();
}

template <typename TMetric>
void
RegistrationParameterScalesEstimator<TMetric>::SetScalesSamplingStrategy()
{
  if (this->m_VirtualDomainPointSet)
  {
    this->SetSamplingStrategy(SamplingStrategyEnum::VirtualDomainPointSetSampling);
  }
  else if (this->TransformHasLocalSupportForScalesEstimation())
  {
    this->SetSamplingStrategy(SamplingStrategyEnum::CentralRegionSampling);
  }
  else if (this->CheckGeneralAffineTransform())
  {
    this->SetSamplingStrategy(SamplingStrategyEnum::CornerSampling);
  }
  else
  {
    this->SetSamplingStrategy(SamplingStrategyEnum::RandomSampling);
    this->SetNumberOfRandomSamples(SizeOfSmallDomain);
  }
}

template <typename TMetric>
void
RegistrationParameterScalesEstimator<TMetric>::SetStepScaleSamplingStrategy()
{
  if (this->m_VirtualDomainPointSet)
  {
    this->SetSamplingStrategy(SamplingStrategyEnum::VirtualDomainPointSetSampling);
  }
  else if (this->TransformHasLocalSupportForScalesEstimation())
  {
    // Have to use FullDomainSampling for a transform with local support
    this->SetSamplingStrategy(SamplingStrategyEnum::FullDomainSampling);
  }
  else if (this->CheckGeneralAffineTransform())
  {
    this->SetSamplingStrategy(SamplingStrategyEnum::CornerSampling);
  }
  else
  {
    this->SetSamplingStrategy(SamplingStrategyEnum::RandomSampling);
    this->SetNumberOfRandomSamples(SizeOfSmallDomain);
  }
}

template <typename TMetric>
bool
RegistrationParameterScalesEstimator<TMetric>::CheckGeneralAffineTransform()
{
  if (this->GetTransformForward())
  {
    return this->CheckGeneralAffineTransformTemplated<MovingTransformType>();
  }
  else
  {
    return this->CheckGeneralAffineTransformTemplated<FixedTransformType>();
  }
}

template <typename TMetric>
template <typename TTransform>
bool
RegistrationParameterScalesEstimator<TMetric>::CheckGeneralAffineTransformTemplated()
{
  using ScalarType = typename TTransform::ScalarType;
  const SizeValueType InputSpaceDimension = TTransform::InputSpaceDimension;
  const SizeValueType OutputSpaceDimension = TTransform::OutputSpaceDimension;

  using TransformBaseType = Transform<ScalarType, InputSpaceDimension, OutputSpaceDimension>;

  const auto * transform = dynamic_cast<const TransformBaseType *>(this->GetTransform());


  if (transform)
  {
    return transform->IsLinear();
  }

  return false;
}

template <typename TMetric>
auto
RegistrationParameterScalesEstimator<TMetric>::GetVirtualDomainCentralIndex() -> VirtualIndexType
{
  VirtualRegionType   region = this->m_Metric->GetVirtualRegion();
  const SizeValueType dim = this->GetDimension();

  VirtualIndexType lowerIndex, upperIndex, centralIndex;
  lowerIndex = region.GetIndex();
  upperIndex = region.GetUpperIndex();

  for (SizeValueType d = 0; d < dim; ++d)
  {
    centralIndex[d] = (IndexValueType)((lowerIndex[d] + upperIndex[d]) / 2.0);
  }

  return centralIndex;
}

template <typename TMetric>
auto
RegistrationParameterScalesEstimator<TMetric>::GetVirtualDomainCentralRegion() -> VirtualRegionType
{
  VirtualIndexType centralIndex = this->GetVirtualDomainCentralIndex();

  VirtualRegionType   region = this->m_Metric->GetVirtualRegion();
  const SizeValueType dim = this->GetDimension();

  VirtualIndexType lowerIndex, upperIndex;
  lowerIndex = region.GetIndex();
  upperIndex = region.GetUpperIndex();

  for (SizeValueType d = 0; d < dim; ++d)
  {
    if (lowerIndex[d] < centralIndex[d] - this->m_CentralRegionRadius)
    {
      lowerIndex[d] = centralIndex[d] - this->m_CentralRegionRadius;
    }
    if (upperIndex[d] > centralIndex[d] + this->m_CentralRegionRadius)
    {
      upperIndex[d] = centralIndex[d] + this->m_CentralRegionRadius;
    }
  }

  VirtualRegionType centralRegion;
  centralRegion.SetIndex(lowerIndex);
  centralRegion.SetUpperIndex(upperIndex);

  return centralRegion;
}

template <typename TMetric>
void
RegistrationParameterScalesEstimator<TMetric>::SampleVirtualDomainWithCentralRegion()
{
  VirtualRegionType centralRegion = this->GetVirtualDomainCentralRegion();
  SampleVirtualDomainWithRegion(centralRegion);
}

template <typename TMetric>
void
RegistrationParameterScalesEstimator<TMetric>::SampleVirtualDomainWithRegion(VirtualRegionType region)
{
  VirtualImageConstPointer image = this->m_Metric->GetVirtualImage();
  const SizeValueType      total = region.GetNumberOfPixels();
  this->m_SamplePoints.resize(total);

  /* Set up an iterator within the user specified virtual image region. */
  using RegionIterator = ImageRegionConstIteratorWithIndex<VirtualImageType>;
  RegionIterator regionIter(image, region);

  VirtualPointType point;

  /* Iterate over the image */
  SizeValueType count = 0;
  regionIter.GoToBegin();
  while (!regionIter.IsAtEnd())
  {
    image->TransformIndexToPhysicalPoint(regionIter.GetIndex(), point);
    this->m_SamplePoints[count] = point;
    ++regionIter;
    ++count;
  }
}

template <typename TMetric>
void
RegistrationParameterScalesEstimator<TMetric>::SampleVirtualDomainWithCorners()
{
  VirtualImageConstPointer image = this->m_Metric->GetVirtualImage();

  VirtualRegionType region = this->m_Metric->GetVirtualRegion();
  VirtualIndexType  firstCorner = region.GetIndex();
  VirtualIndexType  corner;
  VirtualPointType  point;

  VirtualSizeType    size = region.GetSize();
  const unsigned int cornerNumber = 1 << VirtualDimension; // 2^Dimension

  this->m_SamplePoints.resize(cornerNumber);

  for (unsigned int i = 0; i < cornerNumber; ++i)
  {
    for (unsigned int d = 0; d < VirtualDimension; ++d)
    {
      const auto bit = static_cast<unsigned int>((i & (1 << d)) != 0); // 0 or 1
      corner[d] = firstCorner[d] + bit * (size[d] - 1);
    }

    image->TransformIndexToPhysicalPoint(corner, point);
    this->m_SamplePoints[i] = point;
  }
}

template <typename TMetric>
void
RegistrationParameterScalesEstimator<TMetric>::SampleVirtualDomainRandomly()
{
  VirtualImageConstPointer image = this->m_Metric->GetVirtualImage();

  if (m_NumberOfRandomSamples == 0)
  {
    const SizeValueType total = this->m_Metric->GetVirtualRegion().GetNumberOfPixels();
    if (total <= SizeOfSmallDomain)
    {
      this->m_NumberOfRandomSamples = total;
    }
    else
    {
      FloatType ratio = 1 + std::log((FloatType)total / SizeOfSmallDomain);
      // ratio >= 1 since total/SizeOfSmallDomain > 1

      this->m_NumberOfRandomSamples = static_cast<int>(SizeOfSmallDomain * ratio);
      if (m_NumberOfRandomSamples > total)
      {
        this->m_NumberOfRandomSamples = total;
      }
    }
  }

  this->m_SamplePoints.resize(m_NumberOfRandomSamples);

  // Set up a random iterator within the user specified virtual image region.
  using RandomIterator = ImageRandomConstIteratorWithIndex<VirtualImageType>;
  RandomIterator randIter(image, this->m_Metric->GetVirtualRegion());

  VirtualPointType point;

  randIter.SetNumberOfSamples(this->m_NumberOfRandomSamples);
  randIter.GoToBegin();
  for (SizeValueType i = 0; i < m_NumberOfRandomSamples; ++i)
  {
    image->TransformIndexToPhysicalPoint(randIter.GetIndex(), point);
    this->m_SamplePoints[i] = point;
    ++randIter;
  }
}

template <typename TMetric>
void
RegistrationParameterScalesEstimator<TMetric>::SampleVirtualDomainWithPointSet()
{
  // The virtual domain point set must already be supplied.
  if (!this->m_VirtualDomainPointSet)
  {
    itkExceptionMacro("The virtual domain point set has not been set.");
  }
  if (this->m_VirtualDomainPointSet->GetNumberOfPoints() < 1)
  {
    itkExceptionMacro("The virtual domain point set has no points.");
  }

  this->m_SamplePoints.resize(this->m_VirtualDomainPointSet->GetNumberOfPoints());

  typename VirtualPointSetType::PointsContainerConstIterator it(this->m_VirtualDomainPointSet->GetPoints()->Begin());
  SizeValueType                                              count = 0;
  while (it != this->m_VirtualDomainPointSet->GetPoints()->End())
  {
    this->m_SamplePoints[count] = it.Value();
    ++count;
    ++it;
  }
}

template <typename TMetric>
void
RegistrationParameterScalesEstimator<TMetric>::SampleVirtualDomainFully()
{
  VirtualRegionType region = this->m_Metric->GetVirtualRegion();
  this->SampleVirtualDomainWithRegion(region);
}

template <typename TMetric>
void
RegistrationParameterScalesEstimator<TMetric>::PrintSelf(std::ostream & os, Indent indent) const
{
  using namespace print_helper;

  Superclass::PrintSelf(os, indent);

  itkPrintSelfObjectMacro(Metric);

  os << indent << "SamplePoints: " << m_SamplePoints << std::endl;
  os << indent << "SamplingTime: " << static_cast<typename NumericTraits<TimeStamp>::PrintType>(m_SamplingTime)
     << std::endl;
  os << indent << "NumberOfRandomSamples: "
     << static_cast<typename NumericTraits<SizeValueType>::PrintType>(m_NumberOfRandomSamples) << std::endl;
  os << indent
     << "CentralRegionRadius: " << static_cast<typename NumericTraits<IndexValueType>::PrintType>(m_CentralRegionRadius)
     << std::endl;

  itkPrintSelfObjectMacro(VirtualDomainPointSet);

  os << indent << "TransformForward: " << (m_TransformForward ? "On" : "Off") << std::endl;
  os << indent << "SamplingStrategy: " << m_SamplingStrategy << std::endl;
}

} // namespace itk

#endif /* itkRegistrationParameterScalesEstimator_hxx */