1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkWindowConvergenceMonitoringFunction_hxx
#define itkWindowConvergenceMonitoringFunction_hxx
#include "itkBSplineControlPointImageFunction.h"
#include "itkBSplineScatteredDataPointSetToImageFilter.h"
#include "itkImage.h"
#include "itkPointSet.h"
#include "itkVector.h"
namespace itk
{
namespace Function
{
template <typename TScalar>
WindowConvergenceMonitoringFunction<TScalar>::WindowConvergenceMonitoringFunction()
: m_WindowSize(10)
, m_TotalEnergy(0)
{}
template <typename TScalar>
void
WindowConvergenceMonitoringFunction<TScalar>::AddEnergyValue(const EnergyValueType value)
{
itkDebugMacro("Adding energy value " << value);
this->m_EnergyValues.push_back(value);
if (this->GetNumberOfEnergyValues() > this->m_WindowSize)
{
this->m_EnergyValues.pop_front();
}
this->m_TotalEnergy += itk::Math::abs(value);
this->Modified();
}
template <typename TScalar>
void
WindowConvergenceMonitoringFunction<TScalar>::ClearEnergyValues()
{
Superclass::ClearEnergyValues();
this->m_TotalEnergy = RealType{};
}
template <typename TScalar>
auto
WindowConvergenceMonitoringFunction<TScalar>::GetConvergenceValue() const -> RealType
{
if (this->GetNumberOfEnergyValues() < this->m_WindowSize)
{
return NumericTraits<RealType>::max();
}
using ProfilePointDataType = Vector<RealType, 1>;
using CurveType = Image<ProfilePointDataType, 1>;
using EnergyProfileType = PointSet<ProfilePointDataType, 1>;
using ProfilePointType = typename EnergyProfileType::PointType;
typename CurveType::PointType origin;
typename CurveType::SizeType size;
typename CurveType::SpacingType spacing;
origin[0] = 0.0;
size[0] = 11;
spacing[0] = 0.1;
using BSplinerType = BSplineScatteredDataPointSetToImageFilter<EnergyProfileType, CurveType>;
auto bspliner = BSplinerType::New();
bspliner->SetOrigin(origin);
bspliner->SetSpacing(spacing);
bspliner->SetSize(size);
bspliner->SetNumberOfLevels(1);
bspliner->SetSplineOrder(1);
typename BSplinerType::ArrayType ncps;
ncps.Fill(bspliner->GetSplineOrder()[0] + 1);
bspliner->SetNumberOfControlPoints(ncps);
bspliner->SetNumberOfWorkUnits(1);
auto energyProfileWindow = EnergyProfileType::New();
energyProfileWindow->Initialize();
for (unsigned int n = 0; n < this->m_WindowSize; ++n)
{
ProfilePointType windowPoint;
windowPoint[0] = static_cast<typename ProfilePointType::CoordRepType>(n) /
static_cast<typename ProfilePointType::CoordRepType>(this->m_WindowSize - 1);
energyProfileWindow->SetPoint(n, windowPoint);
energyProfileWindow->SetPointData(n, ProfilePointDataType(this->m_EnergyValues[n] / this->m_TotalEnergy));
}
bspliner->SetInput(energyProfileWindow);
bspliner->Update();
using BSplinerFunctionType = BSplineControlPointImageFunction<CurveType>;
auto bsplinerFunction = BSplinerFunctionType::New();
bsplinerFunction->SetOrigin(origin);
bsplinerFunction->SetSpacing(spacing);
bsplinerFunction->SetSize(size);
bsplinerFunction->SetSplineOrder(bspliner->GetSplineOrder());
bsplinerFunction->SetInputImage(bspliner->GetPhiLattice());
ProfilePointType endPoint;
endPoint[0] = NumericTraits<RealType>::OneValue();
typename BSplinerFunctionType::GradientType gradient = bsplinerFunction->EvaluateGradientAtParametricPoint(endPoint);
RealType convergenceValue = -gradient[0][0];
return convergenceValue;
}
/**
* Standard "PrintSelf" method
*/
template <typename TScalar>
void
WindowConvergenceMonitoringFunction<TScalar>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Window size: " << this->m_WindowSize << std::endl;
}
} // end namespace Function
} // end namespace itk
#endif
|