File: itkGradientDescentOptimizerv4Test.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (379 lines) | stat: -rw-r--r-- 11,446 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#include "itkGradientDescentOptimizerv4.h"
#include "itkTestingMacros.h"

/* Cribbed from itkGradientDescentOptimizerTest */

/**
 *  \class GradientDescentOptimizerv4TestMetric for test
 *
 *  The objective function is the quadratic form:
 *
 *  1/2 x^T A x - b^T x
 *
 *  Where A is a matrix and b is a vector
 *  The system in this example is:
 *
 *     | 3  2 ||x|   | 2|   |0|
 *     | 2  6 ||y| + |-8| = |0|
 *
 *
 *   the solution is the vector | 2 -2 |
 *
 */
class GradientDescentOptimizerv4TestMetric : public itk::ObjectToObjectMetricBase
{
public:
  using Self = GradientDescentOptimizerv4TestMetric;
  using Superclass = itk::ObjectToObjectMetricBase;
  using Pointer = itk::SmartPointer<Self>;
  using ConstPointer = itk::SmartPointer<const Self>;
  itkNewMacro(Self);
  itkOverrideGetNameOfClassMacro(GradientDescentOptimizerv4TestMetric);

  enum
  {
    SpaceDimension = 2
  };

  using ParametersType = Superclass::ParametersType;
  using ParametersValueType = Superclass::ParametersValueType;
  using DerivativeType = Superclass::DerivativeType;
  using MeasureType = Superclass::MeasureType;

  GradientDescentOptimizerv4TestMetric()
  {
    m_Parameters.SetSize(SpaceDimension);
    m_Parameters.Fill(0);
  }

  void
  Initialize() override
  {}

  void
  GetDerivative(DerivativeType & derivative) const override
  {
    MeasureType value;
    GetValueAndDerivative(value, derivative);
  }

  void
  GetValueAndDerivative(MeasureType & value, DerivativeType & derivative) const override
  {
    if (derivative.Size() != 2)
    {
      derivative.SetSize(2);
    }

    double x = m_Parameters[0];
    double y = m_Parameters[1];

    std::cout << "GetValueAndDerivative( ";
    std::cout << x << ' ';
    std::cout << y << ") = ";

    value = 0.5 * (3 * x * x + 4 * x * y + 6 * y * y) - 2 * x + 8 * y;

    std::cout << "value: " << value << std::endl;

    /* The optimizer simply takes the derivative from the metric
     * and adds it to the transform after scaling. So instead of
     * setting a 'minimize' option in the gradient, we return
     * a minimizing derivative. */
    derivative[0] = -(3 * x + 2 * y - 2);
    derivative[1] = -(2 * x + 6 * y + 8);

    std::cout << "derivative: " << derivative << std::endl;
  }

  MeasureType
  GetValue() const override
  {
    return 0.0;
  }

  void
  UpdateTransformParameters(const DerivativeType & update, ParametersValueType) override
  {
    m_Parameters += update;
  }

  unsigned int
  GetNumberOfParameters() const override
  {
    return SpaceDimension;
  }

  bool
  HasLocalSupport() const override
  {
    return false;
  }

  unsigned int
  GetNumberOfLocalParameters() const override
  {
    return SpaceDimension;
  }

  /* These Set/Get methods are only needed for this test derivation that
   * isn't using a transform */
  void
  SetParameters(ParametersType & parameters) override
  {
    m_Parameters = parameters;
  }

  const ParametersType &
  GetParameters() const override
  {
    return m_Parameters;
  }

private:
  ParametersType m_Parameters;
};

///////////////////////////////////////////////////////////
int
GradientDescentOptimizerv4RunTest(itk::GradientDescentOptimizerv4::Pointer &             itkOptimizer,
                                  GradientDescentOptimizerv4TestMetric::ParametersType & trueParameters)
{
  try
  {
    std::cout << "currentPosition before optimization: " << itkOptimizer->GetCurrentPosition() << std::endl;
    itkOptimizer->StartOptimization();
    std::cout << "currentPosition after optimization: " << itkOptimizer->GetCurrentPosition() << std::endl;
  }
  catch (const itk::ExceptionObject & e)
  {
    std::cout << "Exception thrown ! " << std::endl;
    std::cout << "An error occurred during Optimization" << std::endl;
    std::cout << "Location    = " << e.GetLocation() << std::endl;
    std::cout << "Description = " << e.GetDescription() << std::endl;
    return EXIT_FAILURE;
  }

  using ParametersType = GradientDescentOptimizerv4TestMetric::ParametersType;
  ParametersType finalPosition = itkOptimizer->GetMetric()->GetParameters();
  std::cout << "Solution        = (";
  std::cout << finalPosition[0] << ',';
  std::cout << finalPosition[1] << ')' << std::endl;

  std::cout << "ConvergenceValue: " << itkOptimizer->GetConvergenceValue() << std::endl;

  // check results to see if it is within range
  ParametersType::ValueType eps = 0.03;
  for (unsigned int j = 0; j < 2; ++j)
  {
    if (itk::Math::abs(finalPosition[j] - trueParameters[j]) > eps)
    {
      std::cerr << "Results do not match: " << std::endl
                << "expected: " << trueParameters << std::endl
                << "returned: " << finalPosition << std::endl;
      return EXIT_FAILURE;
    }
  }

  return EXIT_SUCCESS;
}
///////////////////////////////////////////////////////////
int
itkGradientDescentOptimizerv4Test(int, char *[])
{
  std::cout << "Gradient Descent Object Optimizer Test ";
  std::cout << std::endl << std::endl;
  int result = EXIT_SUCCESS;

  using OptimizerType = itk::GradientDescentOptimizerv4;

  using ScalesType = OptimizerType::ScalesType;

  // Declaration of an itkOptimizer
  auto itkOptimizer = OptimizerType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(
    itkOptimizer, GradientDescentOptimizerv4Template, GradientDescentOptimizerBasev4Template);


  // Declaration of the Metric
  auto metric = GradientDescentOptimizerv4TestMetric::New();

  itkOptimizer->SetMetric(metric);

  using ParametersType = GradientDescentOptimizerv4TestMetric::ParametersType;

  const unsigned int spaceDimension = metric->GetNumberOfParameters();

  // We start not so far from  | 2 -2 |
  ParametersType initialPosition(spaceDimension);

  initialPosition[0] = 100;
  initialPosition[1] = -100;
  metric->SetParameters(initialPosition);

  double learningRate = 0.1;
  itkOptimizer->SetLearningRate(learningRate);
  ITK_TEST_SET_GET_VALUE(learningRate, itkOptimizer->GetLearningRate());

  itk::SizeValueType numberOfIterations = 50;
  itkOptimizer->SetNumberOfIterations(numberOfIterations);
  ITK_TEST_SET_GET_VALUE(numberOfIterations, itkOptimizer->GetNumberOfIterations());

  double maximumStepSizeInPhysicalUnits = 0.0;
  itkOptimizer->SetMaximumStepSizeInPhysicalUnits(maximumStepSizeInPhysicalUnits);
  ITK_TEST_SET_GET_VALUE(maximumStepSizeInPhysicalUnits, itkOptimizer->GetMaximumStepSizeInPhysicalUnits());

  bool doEstimateLearningRateAtEachIteration = false;
  ITK_TEST_SET_GET_BOOLEAN(itkOptimizer, DoEstimateLearningRateAtEachIteration, doEstimateLearningRateAtEachIteration);

  bool doEstimateLearningRateOnce = true;
  ITK_TEST_SET_GET_BOOLEAN(itkOptimizer, DoEstimateLearningRateOnce, doEstimateLearningRateOnce);

  bool returnBestParametersAndValue = false;
  ITK_TEST_SET_GET_BOOLEAN(itkOptimizer, ReturnBestParametersAndValue, returnBestParametersAndValue);

  // Truth
  ParametersType trueParameters(2);
  trueParameters[0] = 2;
  trueParameters[1] = -2;

  // test the optimization
  std::cout << "Test optimization 1:" << std::endl;
  if (GradientDescentOptimizerv4RunTest(itkOptimizer, trueParameters) == EXIT_FAILURE)
  {
    result = EXIT_FAILURE;
  }

  // test with non-idenity scales
  std::cout << "Test optimization with non-identity scales:" << std::endl;
  ScalesType scales(metric->GetNumberOfLocalParameters());
  scales.Fill(0.5);
  itkOptimizer->SetScales(scales);
  metric->SetParameters(initialPosition);
  if (GradientDescentOptimizerv4RunTest(itkOptimizer, trueParameters) == EXIT_FAILURE)
  {
    result = EXIT_FAILURE;
  }

  // test with weights {0.4,0.5}
  std::cout << std::endl << "Test with weights {0.4,0.5}:" << std::endl;
  scales.Fill(1.0);
  itkOptimizer->SetScales(scales);
  ScalesType weights(2);
  weights[0] = 0.4;
  weights[1] = 0.5;
  itkOptimizer->SetWeights(weights);
  itkOptimizer->SetNumberOfIterations(110);
  metric->SetParameters(initialPosition);
  if (GradientDescentOptimizerv4RunTest(itkOptimizer, trueParameters) == EXIT_FAILURE)
  {
    result = EXIT_FAILURE;
  }

  // test with weights {0,1}
  std::cout << std::endl << "Test with weights {0,1}:" << std::endl;
  scales.Fill(1.0);
  itkOptimizer->SetScales(scales);
  weights[0] = 0.0;
  weights[1] = 1.0;
  itkOptimizer->SetWeights(weights);
  trueParameters[0] = initialPosition[0];
  trueParameters[1] = -34.6667;
  metric->SetParameters(initialPosition);
  itkOptimizer->SetNumberOfIterations(40);
  if (GradientDescentOptimizerv4RunTest(itkOptimizer, trueParameters) == EXIT_FAILURE)
  {
    result = EXIT_FAILURE;
  }

  // test with weights {1,0}
  std::cout << std::endl << "Test with weights {1,0}:" << std::endl;
  scales.Fill(1.0);
  itkOptimizer->SetScales(scales);
  weights[0] = 1.0;
  weights[1] = 0.0;
  itkOptimizer->SetWeights(weights);
  trueParameters[0] = 67.3333;
  trueParameters[1] = initialPosition[1];
  metric->SetParameters(initialPosition);
  if (GradientDescentOptimizerv4RunTest(itkOptimizer, trueParameters) == EXIT_FAILURE)
  {
    result = EXIT_FAILURE;
  }

  // For test of learning rate and scales estimation options
  // in an actual registration, see
  // itkAutoScaledGradientDescentRegistrationTest.

  std::cout << "Stop description   = " << itkOptimizer->GetStopConditionDescription() << std::endl;

  // Verify that the optimizer doesn't run if the
  // number of iterations is set to zero.
  std::cout << "\nCheck the optimizer when number of iterations is set to zero:" << std::endl;
  {
    itkOptimizer->SetNumberOfIterations(0);
    metric->SetParameters(initialPosition);
    trueParameters[0] = 100;
    trueParameters[1] = -100;
    if (GradientDescentOptimizerv4RunTest(itkOptimizer, trueParameters) == EXIT_FAILURE)
    {
      result = EXIT_FAILURE;
    }
    if (itkOptimizer->GetCurrentIteration() > 0)
    {
      std::cout << "The optimizer is running iterations despite of ";
      std::cout << "having a maximum number of iterations set to zero" << std::endl;
      result = EXIT_FAILURE;
    }
  }

  std::cout << "\nTest the Exception if the optimizer is not set properly:" << std::endl;
  auto badOptimizer = OptimizerType::New();
  bool caught = false;
  try
  {
    badOptimizer->GetCurrentPosition();
  }
  catch (const itk::ExceptionObject & e)
  {
    std::cout << "Caught expected exception!";
    std::cout << e << std::endl;
    caught = true;
  }

  if (!caught)
  {
    std::cout << "Failed to catch expected exception! " << std::endl;
    result = EXIT_FAILURE;
  }
  std::cout << "Printing self.. " << std::endl;
  std::cout << itkOptimizer << std::endl;

  if (result != EXIT_FAILURE)
  {
    std::cout << "Test passed." << std::endl;
  }
  else
  {
    std::cout << "Test FAILED." << std::endl;
  }
  return result;
}