File: itkGradientDescentOptimizerv4Test2.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (219 lines) | stat: -rw-r--r-- 6,272 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#include "itkGradientDescentOptimizerv4.h"

/* This test simulates the use of a metric with a transform
 * with local support, testing the proper handling of scales for such a case.
 *
 * Cribbed originally from itkGradientDescentOptimizerTest */

/**
 *  \class GradientDescentOptimizerv4Test2Metric for test
 *
 *  The version for this test returns a derivative that simulates
 *  the return from a metric working with a transform with local support.
 *  The derivative does not change, it's only meant to test the mechanics
 *  of applying scales in one iteration of optimization.
 *
 */
class GradientDescentOptimizerv4Test2Metric : public itk::ObjectToObjectMetricBase
{
public:
  using Self = GradientDescentOptimizerv4Test2Metric;
  using Superclass = itk::ObjectToObjectMetricBase;
  using Pointer = itk::SmartPointer<Self>;
  using ConstPointer = itk::SmartPointer<const Self>;
  itkNewMacro(Self);
  itkOverrideGetNameOfClassMacro(GradientDescentOptimizerv4Test2Metric);

  enum
  {
    SpaceDimension = 3
  };

  using ParametersType = Superclass::ParametersType;
  using ParametersValueType = Superclass::ParametersValueType;
  using NumberOfParametersType = Superclass::NumberOfParametersType;
  using DerivativeType = Superclass::DerivativeType;
  using MeasureType = Superclass::MeasureType;

  GradientDescentOptimizerv4Test2Metric()
  {
    m_Parameters.SetSize(this->GetNumberOfParameters());
    m_Parameters.Fill(0);
  }

  void
  Initialize() override
  {}

  void
  GetDerivative(DerivativeType & derivative) const override
  {
    MeasureType value;
    GetValueAndDerivative(value, derivative);
  }

  void
  GetValueAndDerivative(MeasureType & value, DerivativeType & derivative) const override
  {
    if (derivative.Size() != this->GetNumberOfParameters())
    {
      derivative.SetSize(this->GetNumberOfParameters());
    }

    value = 0.0;

    for (NumberOfParametersType i = 0; i < this->GetNumberOfParameters(); ++i)
    {
      derivative[i] = i;
    }

    std::cout << "derivative: " << derivative << std::endl;
  }

  MeasureType
  GetValue() const override
  {
    return 0.0;
  }

  void
  UpdateTransformParameters(const DerivativeType & update, ParametersValueType) override
  {
    m_Parameters += update;
  }

  unsigned int
  GetNumberOfParameters() const override
  {
    return SpaceDimension * 3;
  }

  bool
  HasLocalSupport() const override
  {
    return false;
  }

  unsigned int
  GetNumberOfLocalParameters() const override
  {
    return SpaceDimension;
  }

  /* These Set/Get methods are only needed for this test derivation that
   * isn't using a transform */
  void
  SetParameters(ParametersType & parameters) override
  {
    m_Parameters = parameters;
  }

  const ParametersType &
  GetParameters() const override
  {
    return m_Parameters;
  }

private:
  ParametersType m_Parameters;
};

///////////////////////////////////////////////////////////
int
itkGradientDescentOptimizerv4Test2(int, char *[])
{
  std::cout << "Gradient Descent Object Optimizer Test ";
  std::cout << std::endl << std::endl;

  using OptimizerType = itk::GradientDescentOptimizerv4;

  using ScalesType = OptimizerType::ScalesType;

  // Declaration of an itkOptimizer
  auto itkOptimizer = OptimizerType::New();

  // Declaration of the Metric
  auto metric = GradientDescentOptimizerv4Test2Metric::New();

  itkOptimizer->SetMetric(metric);

  using ParametersType = GradientDescentOptimizerv4Test2Metric::ParametersType;
  using NumberOfParametersType = GradientDescentOptimizerv4Test2Metric::NumberOfParametersType;

  ParametersType initialPosition(metric->GetNumberOfParameters());
  initialPosition.Fill(0);
  metric->SetParameters(initialPosition);

  itkOptimizer->SetLearningRate(1.0);
  itkOptimizer->SetNumberOfIterations(1);

  ScalesType scales(metric->GetNumberOfLocalParameters());
  for (NumberOfParametersType i = 0; i < metric->GetNumberOfLocalParameters(); ++i)
  {
    scales[i] = i + 2;
  }
  itkOptimizer->SetScales(scales);

  ParametersType         truth(metric->GetNumberOfParameters());
  NumberOfParametersType numLocal = metric->GetNumberOfLocalParameters();
  NumberOfParametersType numLoops = metric->GetNumberOfParameters() / numLocal;
  for (NumberOfParametersType i = 0; i < numLoops; ++i)
  {
    for (NumberOfParametersType j = 0; j < numLocal; ++j)
    {
      NumberOfParametersType ind = i * numLocal + j;
      truth[ind] = initialPosition[ind] + (ind) / scales[j];
    }
  }
  std::cout << "truth: " << truth << std::endl;

  try
  {
    itkOptimizer->StartOptimization();
  }
  catch (const itk::ExceptionObject & e)
  {
    std::cout << "Exception thrown ! " << std::endl;
    std::cout << "An error occurred during Optimization" << std::endl;
    std::cout << "Location    = " << e.GetLocation() << std::endl;
    std::cout << "Description = " << e.GetDescription() << std::endl;
    return EXIT_FAILURE;
  }

  ParametersType finalPosition = metric->GetParameters();
  std::cout << "finalPosition = " << finalPosition << std::endl;

  //
  // check results to see if it is within range
  //
  for (NumberOfParametersType j = 0; j < metric->GetNumberOfParameters(); ++j)
  {
    if (itk::Math::abs(finalPosition[j] - truth[j]) > 0.000001)
    {
      std::cerr << "Results do not match: " << std::endl
                << "expected: " << truth << std::endl
                << "actual: " << finalPosition << std::endl;
      return EXIT_FAILURE;
    }
  }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}