1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkMultiGradientOptimizerv4.h"
#include "itkTestingMacros.h"
/**
* \class MultiGradientOptimizerv4TestMetric
*
* The objective function is the summation of two quadratics of form:
*
* 1/2 x^T A x - b^T x
*
* Where A is a matrix and b is a vector
*
* The systems in this example are:
*
* Metric1
*
* | 3 2 ||x| | 2| |0|
* | 2 6 ||y| + |-8| = |0|
*
* Metric2
*
* | 3 2 ||x| | 1| |0|
* | 2 6 ||y| + |-4| = |0|
*
* the weighted optimal solution is the vector | 1.5 -1.5 |
*
*/
class MultiGradientOptimizerv4TestMetric : public itk::ObjectToObjectMetricBase
{
public:
using Self = MultiGradientOptimizerv4TestMetric;
using Superclass = itk::ObjectToObjectMetricBase;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
itkNewMacro(Self);
itkOverrideGetNameOfClassMacro(MultiGradientOptimizerv4TestMetric);
enum
{
SpaceDimension = 2
};
using ParametersType = Superclass::ParametersType;
using ParametersPointer = Superclass::ParametersType *;
using ParametersValueType = Superclass::ParametersValueType;
using DerivativeType = Superclass::DerivativeType;
using MeasureType = Superclass::MeasureType;
MultiGradientOptimizerv4TestMetric() = default;
void
Initialize() override
{}
void
GetDerivative(DerivativeType & derivative) const override
{
derivative.Fill(ParametersValueType{});
}
void
GetValueAndDerivative(MeasureType & value, DerivativeType & derivative) const override
{
if (derivative.Size() != 2)
{
derivative.SetSize(2);
}
double x = (*m_Parameters)[0];
double y = (*m_Parameters)[1];
std::cout << "GetValueAndDerivative( ";
std::cout << x << ' ';
std::cout << y << ") = " << std::endl;
value = 0.5 * (3 * x * x + 4 * x * y + 6 * y * y) - 2 * x + 8 * y;
std::cout << "value: " << value << std::endl;
/* The optimizer simply takes the derivative from the metric
* and adds it to the transform after scaling. So instead of
* setting a 'minimize' option in the gradient, we return
* a minimizing derivative. */
derivative[0] = -(3 * x + 2 * y - 2);
derivative[1] = -(2 * x + 6 * y + 8);
std::cout << "derivative: " << derivative << std::endl;
}
MeasureType
GetValue() const override
{
double x = (*m_Parameters)[0];
double y = (*m_Parameters)[1];
double metric = 0.5 * (3 * x * x + 4 * x * y + 6 * y * y) - 2 * x + 8 * y;
std::cout << (*m_Parameters) << " metric " << metric << std::endl;
return metric;
}
void
UpdateTransformParameters(const DerivativeType & update, ParametersValueType) override
{
(*m_Parameters) += update;
}
unsigned int
GetNumberOfParameters() const override
{
return SpaceDimension;
}
bool
HasLocalSupport() const override
{
return false;
}
unsigned int
GetNumberOfLocalParameters() const override
{
return SpaceDimension;
}
/* These Set/Get methods are only needed for this test derivation that
* isn't using a transform */
void
SetParameters(ParametersType & parameters) override
{
m_Parameters = ¶meters;
}
const ParametersType &
GetParameters() const override
{
return (*m_Parameters);
}
private:
ParametersPointer m_Parameters{ nullptr };
};
/** A second test metric with slightly different optimum */
class MultiGradientOptimizerv4TestMetric2 : public itk::ObjectToObjectMetricBase
{
public:
using Self = MultiGradientOptimizerv4TestMetric2;
using Superclass = itk::ObjectToObjectMetricBase;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
itkNewMacro(Self);
itkOverrideGetNameOfClassMacro(MultiGradientOptimizerv4TestMetric2);
enum
{
SpaceDimension = 2
};
using ParametersType = Superclass::ParametersType;
using ParametersPointer = Superclass::ParametersType *;
using ParametersValueType = Superclass::ParametersValueType;
using DerivativeType = Superclass::DerivativeType;
using MeasureType = Superclass::MeasureType;
MultiGradientOptimizerv4TestMetric2() = default;
void
Initialize() override
{}
void
GetDerivative(DerivativeType & derivative) const override
{
derivative.Fill(ParametersValueType{});
}
void
GetValueAndDerivative(MeasureType & value, DerivativeType & derivative) const override
{
if (derivative.Size() != 2)
{
derivative.SetSize(2);
}
double x = (*m_Parameters)[0];
double y = (*m_Parameters)[1];
std::cout << "GetValueAndDerivative( ";
std::cout << x << ' ';
std::cout << y << ") = " << std::endl;
value = 0.5 * (3 * x * x + 4 * x * y + 6 * y * y) - x + 4 * y;
std::cout << "value: " << value << std::endl;
/* The optimizer simply takes the derivative from the metric
* and adds it to the transform after scaling. So instead of
* setting a 'minimize' option in the gradient, we return
* a minimizing derivative. */
derivative[0] = -(3 * x + 2 * y - 1);
derivative[1] = -(2 * x + 6 * y + 4);
std::cout << "derivative: " << derivative << std::endl;
}
MeasureType
GetValue() const override
{
double x = (*m_Parameters)[0];
double y = (*m_Parameters)[1];
double metric = 0.5 * (3 * x * x + 4 * x * y + 6 * y * y) - x + 4 * y;
std::cout << (*m_Parameters) << " metric " << metric << std::endl;
return metric;
}
bool
HasLocalSupport() const override
{
return false;
}
void
UpdateTransformParameters(const DerivativeType & update, ParametersValueType) override
{
(*m_Parameters) += update;
}
unsigned int
GetNumberOfParameters() const override
{
return SpaceDimension;
}
unsigned int
GetNumberOfLocalParameters() const override
{
return SpaceDimension;
}
/* These Set/Get methods are only needed for this test derivation that
* isn't using a transform */
void
SetParameters(ParametersType & parameters) override
{
m_Parameters = ¶meters;
}
const ParametersType &
GetParameters() const override
{
return (*m_Parameters);
}
private:
ParametersPointer m_Parameters{ nullptr };
};
///////////////////////////////////////////////////////////
/** This metric has an optimum at (1,-1) and when we
* combine its gradient with that of the metric above
* we expect an average result with solution @ (1.5,-1.5)
*/
///////////////////////////////////////////////////////////
int
MultiGradientOptimizerv4RunTest(itk::MultiGradientOptimizerv4::Pointer & itkOptimizer)
{
try
{
std::cout << "currentPosition before optimization: " << itkOptimizer->GetCurrentPosition() << std::endl;
itkOptimizer->StartOptimization();
std::cout << "currentPosition after optimization: " << itkOptimizer->GetCurrentPosition() << std::endl;
}
catch (const itk::ExceptionObject & e)
{
std::cout << "Exception thrown ! " << std::endl;
std::cout << "An error occurred during Optimization" << std::endl;
std::cout << "Location = " << e.GetLocation() << std::endl;
std::cout << "Description = " << e.GetDescription() << std::endl;
return EXIT_FAILURE;
}
std::cout << "StopCondition: " << itkOptimizer->GetStopCondition() << std::endl;
using ParametersType = MultiGradientOptimizerv4TestMetric::ParametersType;
ParametersType finalPosition = itkOptimizer->GetMetric()->GetParameters();
std::cout << "Solution = (";
std::cout << finalPosition[0] << ',';
std::cout << finalPosition[1] << ')' << std::endl;
//
// check results to see if it is within range
//
ParametersType trueParameters(2);
trueParameters[0] = 1.5;
trueParameters[1] = -1.5;
for (itk::SizeValueType j = 0; j < 2; ++j)
{
if (itk::Math::abs(finalPosition[j] - trueParameters[j]) > 0.01)
{
std::cerr << "Results do not match: " << std::endl
<< "expected: " << trueParameters << std::endl
<< "returned: " << finalPosition << std::endl;
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
///////////////////////////////////////////////////////////
int
itkMultiGradientOptimizerv4Test(int, char *[])
{
std::cout << "MultiGradient descent Optimizer Test ";
std::cout << std::endl << std::endl;
using OptimizerType = itk::MultiGradientOptimizerv4;
using ParametersType = MultiGradientOptimizerv4TestMetric::ParametersType;
// Declaration of an itkOptimizer
auto itkOptimizer = OptimizerType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(itkOptimizer, MultiGradientOptimizerv4Template, GradientDescentOptimizerv4Template);
// Declaration of the Metric
auto metric = MultiGradientOptimizerv4TestMetric::New();
auto metric2 = MultiGradientOptimizerv4TestMetric2::New();
constexpr unsigned int spaceDimension = 2;
itkOptimizer->SetMetric(metric);
itkOptimizer->SetNumberOfIterations(50);
OptimizerType::OptimizersListType optimizersList = itkOptimizer->GetOptimizersList();
/** Declare the first optimizer for metric 1 */
OptimizerType::LocalOptimizerPointer locoptimizer = OptimizerType::LocalOptimizerType::New();
locoptimizer->SetLearningRate(1.e-1);
locoptimizer->SetNumberOfIterations(25);
locoptimizer->SetMetric(metric);
locoptimizer->SetNumberOfIterations(1);
optimizersList.push_back(locoptimizer);
/** Declare the 2nd optimizer for metric 2 */
OptimizerType::LocalOptimizerPointer locoptimizer2 = OptimizerType::LocalOptimizerType::New();
locoptimizer2->SetLearningRate(1.e-1);
locoptimizer2->SetNumberOfIterations(25);
locoptimizer2->SetMetric(metric2);
locoptimizer->SetNumberOfIterations(1);
optimizersList.push_back(locoptimizer2);
/** Pass the list back to the combined optimizer */
itkOptimizer->SetOptimizersList(optimizersList);
/*
* Test 1
*/
// We start not so far from | 1.5 -1.5 |
ParametersType testPosition(spaceDimension);
testPosition[0] = 7.5;
testPosition[1] = 9.5;
/** Note: both metrics have the same transforms and parameters */
/** We need the parameters to be the same object across all metric instances*/
metric->SetParameters(testPosition);
metric2->SetParameters(testPosition);
// test the optimization
std::cout << "Test optimization with equal weights on each metric:" << std::endl;
if (MultiGradientOptimizerv4RunTest(itkOptimizer) == EXIT_FAILURE)
{
return EXIT_FAILURE;
}
std::cout << "Test 1 passed." << std::endl;
return EXIT_SUCCESS;
}
|