1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkMultiStartOptimizerv4.h"
#include "itkTestingMacros.h"
/**
* \class MultiStartOptimizerv4TestMetric for test
*
* The objectif function is the quadratic form:
*
* 1/2 x^T A x - b^T x
*
* Where A is a matrix and b is a vector
* The system in this example is:
*
* | 3 2 ||x| | 2| |0|
* | 2 6 ||y| + |-8| = |0|
*
*
* the solution is the vector | 2 -2 |
*
*/
class MultiStartOptimizerv4TestMetric : public itk::ObjectToObjectMetricBase
{
public:
using Self = MultiStartOptimizerv4TestMetric;
using Superclass = itk::ObjectToObjectMetricBase;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
itkNewMacro(Self);
itkOverrideGetNameOfClassMacro(MultiStartOptimizerv4TestMetric);
enum
{
SpaceDimension = 2
};
using ParametersType = Superclass::ParametersType;
using ParametersValueType = Superclass::ParametersValueType;
using DerivativeType = Superclass::DerivativeType;
using MeasureType = Superclass::MeasureType;
MultiStartOptimizerv4TestMetric()
{
m_Parameters.SetSize(SpaceDimension);
m_Parameters.Fill(0);
}
void
Initialize() override
{}
void
GetDerivative(DerivativeType & derivative) const override
{
derivative.Fill(ParametersValueType{});
}
void
GetValueAndDerivative(MeasureType & value, DerivativeType & derivative) const override
{
if (derivative.Size() != 2)
{
derivative.SetSize(2);
}
double x = m_Parameters[0];
double y = m_Parameters[1];
std::cout << "GetValueAndDerivative( ";
std::cout << x << ' ';
std::cout << y << ") = " << std::endl;
value = 0.5 * (3 * x * x + 4 * x * y + 6 * y * y) - 2 * x + 8 * y;
std::cout << "value: " << value << std::endl;
/* The optimizer simply takes the derivative from the metric
* and adds it to the transform after scaling. So instead of
* setting a 'minimize' option in the gradient, we return
* a minimizing derivative. */
derivative[0] = -(3 * x + 2 * y - 2);
derivative[1] = -(2 * x + 6 * y + 8);
std::cout << "derivative: " << derivative << std::endl;
}
MeasureType
GetValue() const override
{
double x = m_Parameters[0];
double y = m_Parameters[1];
double metric = 0.5 * (3 * x * x + 4 * x * y + 6 * y * y) - 2 * x + 8 * y;
std::cout << m_Parameters << " metric " << metric << std::endl;
return metric;
}
void
UpdateTransformParameters(const DerivativeType & update, ParametersValueType) override
{
m_Parameters += update;
}
unsigned int
GetNumberOfParameters() const override
{
return SpaceDimension;
}
bool
HasLocalSupport() const override
{
return false;
}
unsigned int
GetNumberOfLocalParameters() const override
{
return SpaceDimension;
}
/* These Set/Get methods are only needed for this test derivation that
* isn't using a transform */
void
SetParameters(ParametersType & parameters) override
{
m_Parameters = parameters;
}
const ParametersType &
GetParameters() const override
{
return m_Parameters;
}
private:
ParametersType m_Parameters;
};
///////////////////////////////////////////////////////////
int
MultiStartOptimizerv4RunTest(itk::MultiStartOptimizerv4::Pointer & itkOptimizer)
{
try
{
std::cout << "currentPosition before optimization: " << itkOptimizer->GetCurrentPosition() << std::endl;
itkOptimizer->StartOptimization();
std::cout << "currentPosition after optimization: " << itkOptimizer->GetCurrentPosition() << std::endl;
}
catch (const itk::ExceptionObject & e)
{
std::cout << "Exception thrown ! " << std::endl;
std::cout << "An error occurred during Optimization" << std::endl;
std::cout << "Location = " << e.GetLocation() << std::endl;
std::cout << "Description = " << e.GetDescription() << std::endl;
return EXIT_FAILURE;
}
using ParametersType = MultiStartOptimizerv4TestMetric::ParametersType;
ParametersType finalPosition = itkOptimizer->GetMetric()->GetParameters();
ParametersType bestPosition = itkOptimizer->GetBestParameters();
std::cout << "Solution = (";
std::cout << finalPosition[0] << ',';
std::cout << finalPosition[1] << ')' << std::endl;
std::cout << "Best Solution = (";
std::cout << bestPosition[0] << ',';
std::cout << bestPosition[1] << ')' << std::endl;
//
// check results to see if it is within range
//
ParametersType trueParameters(2);
trueParameters[0] = 2.0;
trueParameters[1] = -2.0;
for (itk::SizeValueType j = 0; j < 2; ++j)
{
if (itk::Math::abs(bestPosition[j] - trueParameters[j]) > 0.01)
{
std::cerr << "Results do not match: " << std::endl
<< "expected: " << trueParameters << std::endl
<< "returned: " << finalPosition << std::endl;
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
///////////////////////////////////////////////////////////
int
itkMultiStartOptimizerv4Test(int, char *[])
{
std::cout << "MultiStart Optimizer Test ";
std::cout << std::endl << std::endl;
using OptimizerType = itk::MultiStartOptimizerv4;
// Declaration of an itkOptimizer
auto itkOptimizer = OptimizerType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(itkOptimizer, MultiStartOptimizerv4Template, ObjectToObjectOptimizerBaseTemplate);
auto stopCondition = itk::StopConditionObjectToObjectOptimizerEnum::MAXIMUM_NUMBER_OF_ITERATIONS;
ITK_TEST_EXPECT_EQUAL(stopCondition, itkOptimizer->GetStopCondition());
// Declaration of the Metric
auto metric = MultiStartOptimizerv4TestMetric::New();
itkOptimizer->SetMetric(metric);
using ParametersType = MultiStartOptimizerv4TestMetric::ParametersType;
const unsigned int spaceDimension = metric->GetNumberOfParameters();
/*
* Test 1
*/
// We start not so far from | 2 -2 |
OptimizerType::ParametersListType parametersList = itkOptimizer->GetParametersList();
for (int i = -3; i < 3; ++i)
{
for (int j = -3; j < 3; ++j)
{
ParametersType testPosition(spaceDimension);
testPosition[0] = static_cast<double>(i);
testPosition[1] = static_cast<double>(j);
parametersList.push_back(testPosition);
}
}
metric->SetParameters(parametersList[0]);
itkOptimizer->SetParametersList(parametersList);
// test the optimization
std::cout << "Test optimization 1 without local optimizer:" << std::endl;
if (MultiStartOptimizerv4RunTest(itkOptimizer) == EXIT_FAILURE)
{
return EXIT_FAILURE;
}
std::cout << "Test 1 passed." << std::endl;
/*
* Test 2
*/
std::cout << "Test optimization 2: with local optimizer" << std::endl;
itkOptimizer->InstantiateLocalOptimizer();
parametersList.clear();
for (int i = -99; i < 103; i += 100)
{
for (int j = -3; j < -2; ++j)
{
ParametersType testPosition(spaceDimension);
testPosition[0] = static_cast<double>(i);
testPosition[1] = static_cast<double>(j);
parametersList.push_back(testPosition);
}
}
metric->SetParameters(parametersList[0]);
itkOptimizer->SetParametersList(parametersList);
if (MultiStartOptimizerv4RunTest(itkOptimizer) == EXIT_FAILURE)
{
return EXIT_FAILURE;
}
std::cout << "Test 2 passed." << std::endl;
/*
* Test 3
*/
std::cout << "Test optimization 3: with local optimizer passed by user" << std::endl;
parametersList.clear();
for (int i = 1; i < 2; ++i)
{
for (int j = -103; j < 99; j += 100)
{
ParametersType testPosition(spaceDimension);
testPosition[0] = static_cast<double>(i);
testPosition[1] = static_cast<double>(j);
parametersList.push_back(testPosition);
}
}
metric->SetParameters(parametersList[0]);
itkOptimizer->SetParametersList(parametersList);
OptimizerType::LocalOptimizerPointer optimizer = OptimizerType::LocalOptimizerType::New();
optimizer->SetLearningRate(1.e-1);
optimizer->SetNumberOfIterations(25);
itkOptimizer->SetLocalOptimizer(optimizer);
ITK_TEST_SET_GET_VALUE(optimizer, itkOptimizer->GetLocalOptimizer());
if (MultiStartOptimizerv4RunTest(itkOptimizer) == EXIT_FAILURE)
{
return EXIT_FAILURE;
}
std::cout << "Test 3 passed." << std::endl;
return EXIT_SUCCESS;
}
|