1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkCovarianceSampleFilter_h
#define itkCovarianceSampleFilter_h
#include "itkProcessObject.h"
#include "itkVariableSizeMatrix.h"
#include "itkSimpleDataObjectDecorator.h"
namespace itk
{
namespace Statistics
{
/**
* \class CovarianceSampleFilter
* \brief Calculates the covariance matrix of the target sample data.
*
* The filter calculates first the sample mean and use it in the covariance
* calculation. The covariance is computed as follows
* Let \f$\Sigma\f$ denotes covariance matrix for the sample, then:
* When \f$x_{i}\f$ is \f$i\f$th component of a measurement vector
* \f$\vec x\f$, \f$\mu_{i}\f$ is the \f$i\f$th component of the \f$\vec\mu\f$,
* and the \f$\sigma_{ij}\f$ is the \f$ij\f$th component \f$\Sigma\f$,
* \f$\sigma_{ij} = (x_{i} - \mu_{i})(x_{j} - \mu_{j})\f$
*
* This estimator is an unbiased one, because it divisor in the covariance
* computation takes into account that one degree of freedom has been taken
* for computing the mean.
*
* Without the plugged in mean vector, this calculator will perform
* the single pass mean and covariance calculation algorithm.
*
* \ingroup ITKStatistics
*/
template <typename TSample>
class ITK_TEMPLATE_EXPORT CovarianceSampleFilter : public ProcessObject
{
public:
ITK_DISALLOW_COPY_AND_MOVE(CovarianceSampleFilter);
/** Standard class type aliases. */
using Self = CovarianceSampleFilter;
using Superclass = ProcessObject;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using SampleType = TSample;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(CovarianceSampleFilter);
itkNewMacro(Self);
/** Type of each measurement vector in sample */
using MeasurementVectorType = typename SampleType::MeasurementVectorType;
/** Type of the length of each measurement vector */
using MeasurementVectorSizeType = typename SampleType::MeasurementVectorSizeType;
/** Type of measurement vector component value */
using MeasurementType = typename SampleType::MeasurementType;
/** Type of a measurement vector, holding floating point values */
using MeasurementVectorRealType = typename NumericTraits<MeasurementVectorType>::RealType;
/** Type of a floating point measurement component value */
using MeasurementRealType = typename NumericTraits<MeasurementType>::RealType;
/** Method to set the sample */
using Superclass::SetInput;
void
SetInput(const SampleType * sample);
/** Method to get the sample */
const SampleType *
GetInput() const;
/** Type of covariance matrix output */
using MatrixType = VariableSizeMatrix<MeasurementRealType>;
/** Return the covariance matrix */
const MatrixType
GetCovarianceMatrix() const;
/** VariableSizeMatrix is not a DataObject, we need to decorate it to push it down
* a ProcessObject's pipeline */
using MatrixDecoratedType = SimpleDataObjectDecorator<MatrixType>;
const MatrixDecoratedType *
GetCovarianceMatrixOutput() const;
/** Return the mean vector */
const MeasurementVectorRealType
GetMean() const;
/** MeasurementVector is not a DataObject, we need to decorate it to push it down
* a ProcessObject's pipeline */
using MeasurementVectorDecoratedType = SimpleDataObjectDecorator<MeasurementVectorRealType>;
const MeasurementVectorDecoratedType *
GetMeanOutput() const;
using OutputType = MeasurementVectorDecoratedType;
MeasurementVectorSizeType
GetMeasurementVectorSize() const;
protected:
CovarianceSampleFilter();
~CovarianceSampleFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** DataObject pointer */
using DataObjectPointer = DataObject::Pointer;
using DataObjectPointerArraySizeType = ProcessObject::DataObjectPointerArraySizeType;
using Superclass::MakeOutput;
DataObjectPointer
MakeOutput(DataObjectPointerArraySizeType index) override;
void
GenerateData() override;
}; // end of class
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkCovarianceSampleFilter.hxx"
#endif
#endif
|