File: itkCovarianceSampleFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (228 lines) | stat: -rw-r--r-- 7,022 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkCovarianceSampleFilter_hxx
#define itkCovarianceSampleFilter_hxx

#include "itkMeanSampleFilter.h"

namespace itk
{
namespace Statistics
{
template <typename TSample>
CovarianceSampleFilter<TSample>::CovarianceSampleFilter()
{
  this->ProcessObject::SetNumberOfRequiredInputs(1);
  this->ProcessObject::SetNumberOfRequiredOutputs(2);

  this->ProcessObject::SetNthOutput(0, this->MakeOutput(0));
  this->ProcessObject::SetNthOutput(1, this->MakeOutput(1));
}

template <typename TSample>
void
CovarianceSampleFilter<TSample>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
}

template <typename TSample>
void
CovarianceSampleFilter<TSample>::SetInput(const SampleType * sample)
{
  this->ProcessObject::SetNthInput(0, const_cast<SampleType *>(sample));
}

template <typename TSample>
const TSample *
CovarianceSampleFilter<TSample>::GetInput() const
{
  return itkDynamicCastInDebugMode<const SampleType *>(this->GetPrimaryInput());
}

template <typename TSample>
auto
CovarianceSampleFilter<TSample>::MakeOutput(DataObjectPointerArraySizeType index) -> DataObjectPointer
{
  MeasurementVectorSizeType measurementVectorSize = this->GetMeasurementVectorSize();

  if (index == 0)
  {
    MatrixType covarianceMatrix(measurementVectorSize, measurementVectorSize);
    covarianceMatrix.SetIdentity();
    auto decoratedCovarianceMatrix = MatrixDecoratedType::New();
    decoratedCovarianceMatrix->Set(covarianceMatrix);
    return decoratedCovarianceMatrix.GetPointer();
  }

  if (index == 1)
  {
    MeasurementVectorRealType mean;
    (void)mean; // for complainty pants : valgrind
    NumericTraits<MeasurementVectorRealType>::SetLength(mean, this->GetMeasurementVectorSize());
    // NumericTraits::SetLength also initializes array to zero
    auto decoratedMean = MeasurementVectorDecoratedType::New();
    decoratedMean->Set(mean);
    return decoratedMean.GetPointer();
  }
  itkExceptionMacro("Trying to create output of index " << index << " larger than the number of output");
}

template <typename TSample>
auto
CovarianceSampleFilter<TSample>::GetMeasurementVectorSize() const -> MeasurementVectorSizeType
{
  const SampleType * input = this->GetInput();

  if (input)
  {
    return input->GetMeasurementVectorSize();
  }

  // Test if the Vector type knows its length
  MeasurementVectorSizeType measurementVectorSize = NumericTraits<MeasurementVectorType>::GetLength({});

  if (measurementVectorSize)
  {
    return measurementVectorSize;
  }

  measurementVectorSize = 1; // Otherwise set it to an innocuous value

  return measurementVectorSize;
}

template <typename TSample>
inline void
CovarianceSampleFilter<TSample>::GenerateData()
{
  // set up input / output
  const SampleType * input = this->GetInput();

  MeasurementVectorSizeType measurementVectorSize = input->GetMeasurementVectorSize();

  auto * decoratedOutput = itkDynamicCastInDebugMode<MatrixDecoratedType *>(this->ProcessObject::GetOutput(0));

  MatrixType output = decoratedOutput->Get();
  output.SetSize(measurementVectorSize, measurementVectorSize);
  output.Fill(typename MatrixType::ValueType{});

  auto * decoratedMeanOutput =
    itkDynamicCastInDebugMode<MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(1));

  // calculate mean
  using MeanFilterType = MeanSampleFilter<SampleType>;
  auto meanFilter = MeanFilterType::New();

  meanFilter->SetInput(input);
  meanFilter->Update();

  const typename MeanFilterType::MeasurementVectorRealType mean = meanFilter->GetMean();
  decoratedMeanOutput->Set(mean);

  // covariance algorithm
  MeasurementVectorRealType diff;
  NumericTraits<MeasurementVectorRealType>::SetLength(diff, measurementVectorSize);

  using TotalFrequencyType = typename SampleType::TotalAbsoluteFrequencyType;
  TotalFrequencyType totalFrequency{};

  typename SampleType::ConstIterator       iter = input->Begin();
  const typename SampleType::ConstIterator end = input->End();

  // fills the lower triangle and the diagonal cells in the covariance matrix
  for (; iter != end; ++iter)
  {
    const MeasurementVectorType & measurement = iter.GetMeasurementVector();

    const typename SampleType::AbsoluteFrequencyType frequency = iter.GetFrequency();
    totalFrequency += frequency;

    for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
    {
      const auto component = static_cast<MeasurementRealType>(measurement[dim]);

      diff[dim] = (component - mean[dim]);
    }

    // updates the covariance matrix
    for (unsigned int row = 0; row < measurementVectorSize; ++row)
    {
      for (unsigned int col = 0; col < row + 1; ++col)
      {
        output(row, col) += (static_cast<MeasurementRealType>(frequency) * diff[row] * diff[col]);
      }
    }
  }

  // fills the upper triangle using the lower triangle
  for (unsigned int row = 1; row < measurementVectorSize; ++row)
  {
    for (unsigned int col = 0; col < row; ++col)
    {
      output(col, row) = output(row, col);
    }
  }

  const double normalizationFactor = (static_cast<MeasurementRealType>(totalFrequency) - 1.0);

  if (normalizationFactor > itk::Math::eps)
  {
    const double inverseNormalizationFactor = 1.0 / normalizationFactor;

    output *= inverseNormalizationFactor;
  }
  else
  {
    itkExceptionMacro("Total Frequency was too close to 1.0. Value = " << totalFrequency);
  }

  decoratedOutput->Set(output);
}

template <typename TSample>
auto
CovarianceSampleFilter<TSample>::GetCovarianceMatrixOutput() const -> const MatrixDecoratedType *
{
  return static_cast<const MatrixDecoratedType *>(this->ProcessObject::GetOutput(0));
}

template <typename TSample>
auto
CovarianceSampleFilter<TSample>::GetCovarianceMatrix() const -> const MatrixType
{
  return this->GetCovarianceMatrixOutput()->Get();
}

template <typename TSample>
auto
CovarianceSampleFilter<TSample>::GetMeanOutput() const -> const MeasurementVectorDecoratedType *
{
  return static_cast<const MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(1));
}

template <typename TSample>
auto
CovarianceSampleFilter<TSample>::GetMean() const -> const MeasurementVectorRealType
{
  return this->GetMeanOutput()->Get();
}
} // end of namespace Statistics
} // end of namespace itk

#endif