1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkCovarianceSampleFilter_hxx
#define itkCovarianceSampleFilter_hxx
#include "itkMeanSampleFilter.h"
namespace itk
{
namespace Statistics
{
template <typename TSample>
CovarianceSampleFilter<TSample>::CovarianceSampleFilter()
{
this->ProcessObject::SetNumberOfRequiredInputs(1);
this->ProcessObject::SetNumberOfRequiredOutputs(2);
this->ProcessObject::SetNthOutput(0, this->MakeOutput(0));
this->ProcessObject::SetNthOutput(1, this->MakeOutput(1));
}
template <typename TSample>
void
CovarianceSampleFilter<TSample>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
}
template <typename TSample>
void
CovarianceSampleFilter<TSample>::SetInput(const SampleType * sample)
{
this->ProcessObject::SetNthInput(0, const_cast<SampleType *>(sample));
}
template <typename TSample>
const TSample *
CovarianceSampleFilter<TSample>::GetInput() const
{
return itkDynamicCastInDebugMode<const SampleType *>(this->GetPrimaryInput());
}
template <typename TSample>
auto
CovarianceSampleFilter<TSample>::MakeOutput(DataObjectPointerArraySizeType index) -> DataObjectPointer
{
MeasurementVectorSizeType measurementVectorSize = this->GetMeasurementVectorSize();
if (index == 0)
{
MatrixType covarianceMatrix(measurementVectorSize, measurementVectorSize);
covarianceMatrix.SetIdentity();
auto decoratedCovarianceMatrix = MatrixDecoratedType::New();
decoratedCovarianceMatrix->Set(covarianceMatrix);
return decoratedCovarianceMatrix.GetPointer();
}
if (index == 1)
{
MeasurementVectorRealType mean;
(void)mean; // for complainty pants : valgrind
NumericTraits<MeasurementVectorRealType>::SetLength(mean, this->GetMeasurementVectorSize());
// NumericTraits::SetLength also initializes array to zero
auto decoratedMean = MeasurementVectorDecoratedType::New();
decoratedMean->Set(mean);
return decoratedMean.GetPointer();
}
itkExceptionMacro("Trying to create output of index " << index << " larger than the number of output");
}
template <typename TSample>
auto
CovarianceSampleFilter<TSample>::GetMeasurementVectorSize() const -> MeasurementVectorSizeType
{
const SampleType * input = this->GetInput();
if (input)
{
return input->GetMeasurementVectorSize();
}
// Test if the Vector type knows its length
MeasurementVectorSizeType measurementVectorSize = NumericTraits<MeasurementVectorType>::GetLength({});
if (measurementVectorSize)
{
return measurementVectorSize;
}
measurementVectorSize = 1; // Otherwise set it to an innocuous value
return measurementVectorSize;
}
template <typename TSample>
inline void
CovarianceSampleFilter<TSample>::GenerateData()
{
// set up input / output
const SampleType * input = this->GetInput();
MeasurementVectorSizeType measurementVectorSize = input->GetMeasurementVectorSize();
auto * decoratedOutput = itkDynamicCastInDebugMode<MatrixDecoratedType *>(this->ProcessObject::GetOutput(0));
MatrixType output = decoratedOutput->Get();
output.SetSize(measurementVectorSize, measurementVectorSize);
output.Fill(typename MatrixType::ValueType{});
auto * decoratedMeanOutput =
itkDynamicCastInDebugMode<MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(1));
// calculate mean
using MeanFilterType = MeanSampleFilter<SampleType>;
auto meanFilter = MeanFilterType::New();
meanFilter->SetInput(input);
meanFilter->Update();
const typename MeanFilterType::MeasurementVectorRealType mean = meanFilter->GetMean();
decoratedMeanOutput->Set(mean);
// covariance algorithm
MeasurementVectorRealType diff;
NumericTraits<MeasurementVectorRealType>::SetLength(diff, measurementVectorSize);
using TotalFrequencyType = typename SampleType::TotalAbsoluteFrequencyType;
TotalFrequencyType totalFrequency{};
typename SampleType::ConstIterator iter = input->Begin();
const typename SampleType::ConstIterator end = input->End();
// fills the lower triangle and the diagonal cells in the covariance matrix
for (; iter != end; ++iter)
{
const MeasurementVectorType & measurement = iter.GetMeasurementVector();
const typename SampleType::AbsoluteFrequencyType frequency = iter.GetFrequency();
totalFrequency += frequency;
for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
{
const auto component = static_cast<MeasurementRealType>(measurement[dim]);
diff[dim] = (component - mean[dim]);
}
// updates the covariance matrix
for (unsigned int row = 0; row < measurementVectorSize; ++row)
{
for (unsigned int col = 0; col < row + 1; ++col)
{
output(row, col) += (static_cast<MeasurementRealType>(frequency) * diff[row] * diff[col]);
}
}
}
// fills the upper triangle using the lower triangle
for (unsigned int row = 1; row < measurementVectorSize; ++row)
{
for (unsigned int col = 0; col < row; ++col)
{
output(col, row) = output(row, col);
}
}
const double normalizationFactor = (static_cast<MeasurementRealType>(totalFrequency) - 1.0);
if (normalizationFactor > itk::Math::eps)
{
const double inverseNormalizationFactor = 1.0 / normalizationFactor;
output *= inverseNormalizationFactor;
}
else
{
itkExceptionMacro("Total Frequency was too close to 1.0. Value = " << totalFrequency);
}
decoratedOutput->Set(output);
}
template <typename TSample>
auto
CovarianceSampleFilter<TSample>::GetCovarianceMatrixOutput() const -> const MatrixDecoratedType *
{
return static_cast<const MatrixDecoratedType *>(this->ProcessObject::GetOutput(0));
}
template <typename TSample>
auto
CovarianceSampleFilter<TSample>::GetCovarianceMatrix() const -> const MatrixType
{
return this->GetCovarianceMatrixOutput()->Get();
}
template <typename TSample>
auto
CovarianceSampleFilter<TSample>::GetMeanOutput() const -> const MeasurementVectorDecoratedType *
{
return static_cast<const MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(1));
}
template <typename TSample>
auto
CovarianceSampleFilter<TSample>::GetMean() const -> const MeasurementVectorRealType
{
return this->GetMeanOutput()->Get();
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|