1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkExpectationMaximizationMixtureModelEstimator_h
#define itkExpectationMaximizationMixtureModelEstimator_h
#include "ITKStatisticsExport.h"
#include "itkMixtureModelComponentBase.h"
#include "itkGaussianMembershipFunction.h"
#include "itkSimpleDataObjectDecorator.h"
namespace itk
{
namespace Statistics
{
/** \class ExpectationMaximizationMixtureModelEstimatorEnums
* \brief Contains all enum classes used by ExpectationMaximizationMixtureModelEstimator class.
* \ingroup ITKStatistics
*/
class ExpectationMaximizationMixtureModelEstimatorEnums
{
public:
/** \class TERMINATION_CODE
* \ingroup ITKStatistics
* Termination status after running optimization */
enum class TERMINATION_CODE : uint8_t
{
CONVERGED = 0,
NOT_CONVERGED = 1
};
};
// Define how to print enumeration
extern ITKStatistics_EXPORT std::ostream &
operator<<(std::ostream & out, const ExpectationMaximizationMixtureModelEstimatorEnums::TERMINATION_CODE value);
/**
* \class ExpectationMaximizationMixtureModelEstimator
* \brief This class generates the parameter estimates for a mixture
* model using expectation maximization strategy.
*
* The first template argument is the type of the target sample
* data. This estimator expects one or more mixture model component
* objects of the classes derived from the
* MixtureModelComponentBase. The actual component (or module)
* parameters are updated by each component. Users can think this
* class as a strategy or a integration point for the EM
* procedure. The initial proportion (SetInitialProportions), the
* input sample (SetSample), the mixture model components
* (AddComponent), and the maximum iteration (SetMaximumIteration) are
* required. The EM procedure terminates when the current iteration
* reaches the maximum iteration or the model parameters converge.
*
* <b>Recent API changes:</b>
* The static const macro to get the length of a measurement vector,
* \c MeasurementVectorSize has been removed to allow the length of a measurement
* vector to be specified at run time. It is now obtained at run time from the
* sample set as input. Please use the function
* GetMeasurementVectorSize() to get the length.
*
* \sa MixtureModelComponentBase, GaussianMixtureModelComponent
* \ingroup ITKStatistics
*
* \sphinx
* \sphinxexample{Numerics/Statistics/2DGaussianMixtureModelExpectMax,2D Gaussian Mixture Model Expectation Maximum}
* \sphinxexample{Numerics/Statistics/DistributionOfPixelsUsingGMM,Distribution Of Pixels Using GMM EM}
* \sphinxexample{Numerics/Statistics/DistributeSamplingUsingGMM,Distribute Sampling Using GMM EM}
* \endsphinx
*/
template <typename TSample>
class ITK_TEMPLATE_EXPORT ExpectationMaximizationMixtureModelEstimator : public Object
{
public:
/** Standard class type alias */
using Self = ExpectationMaximizationMixtureModelEstimator;
using Superclass = Object;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ExpectationMaximizationMixtureModelEstimator);
itkNewMacro(Self);
/** TSample template argument related type alias */
using SampleType = TSample;
using MeasurementType = typename TSample::MeasurementType;
using MeasurementVectorType = typename TSample::MeasurementVectorType;
/** Typedef required to generate dataobject decorated output that can
* be plugged into SampleClassifierFilter */
using GaussianMembershipFunctionType = GaussianMembershipFunction<MeasurementVectorType>;
using GaussianMembershipFunctionPointer = typename GaussianMembershipFunctionType::Pointer;
using MembershipFunctionType = MembershipFunctionBase<MeasurementVectorType>;
using MembershipFunctionPointer = typename MembershipFunctionType::ConstPointer;
using MembershipFunctionVectorType = std::vector<MembershipFunctionPointer>;
using MembershipFunctionVectorObjectType = SimpleDataObjectDecorator<MembershipFunctionVectorType>;
using MembershipFunctionVectorObjectPointer = typename MembershipFunctionVectorObjectType::Pointer;
/** Type of the mixture model component base class */
using ComponentType = MixtureModelComponentBase<TSample>;
/** Type of the component pointer storage */
using ComponentVectorType = std::vector<ComponentType *>;
/** Type of the membership function base class */
using ComponentMembershipFunctionType = MembershipFunctionBase<MeasurementVectorType>;
/** Type of the array of the proportion values */
using ProportionVectorType = Array<double>;
/** Sets the target data that will be classified by this */
void
SetSample(const TSample * sample);
/** Returns the target data */
const TSample *
GetSample() const;
/** Set/Gets the initial proportion values. The size of proportion
* vector should be same as the number of component (or classes) */
void
SetInitialProportions(ProportionVectorType & proportions);
const ProportionVectorType &
GetInitialProportions() const;
/** Gets the result proportion values */
const ProportionVectorType &
GetProportions() const;
/** type alias for decorated array of proportion */
using MembershipFunctionsWeightsArrayObjectType = SimpleDataObjectDecorator<ProportionVectorType>;
using MembershipFunctionsWeightsArrayPointer = typename MembershipFunctionsWeightsArrayObjectType::Pointer;
/** Get method for data decorated Membership functions weights array */
const MembershipFunctionsWeightsArrayObjectType *
GetMembershipFunctionsWeightsArray() const;
/** Set/Gets the maximum number of iterations. When the optimization
* process reaches the maximum number of iterations, even if the
* class parameters aren't converged, the optimization process
* stops. */
void
SetMaximumIteration(int numberOfIterations);
int
GetMaximumIteration() const;
/** Gets the current iteration. */
int
GetCurrentIteration()
{
return m_CurrentIteration;
}
/** Adds a new component (or class). */
int
AddComponent(ComponentType * component);
/** Gets the total number of classes currently plugged in. */
unsigned int
GetNumberOfComponents() const;
/** Runs the optimization process. */
void
Update();
using TERMINATION_CODE_ENUM = ExpectationMaximizationMixtureModelEstimatorEnums::TERMINATION_CODE;
#if !defined(ITK_LEGACY_REMOVE)
/**Exposes enums values for backwards compatibility*/
static constexpr TERMINATION_CODE_ENUM CONVERGED = TERMINATION_CODE_ENUM::CONVERGED;
static constexpr TERMINATION_CODE_ENUM NOT_CONVERGED = TERMINATION_CODE_ENUM::NOT_CONVERGED;
#endif
/** Gets the termination status */
TERMINATION_CODE_ENUM
GetTerminationCode() const;
/** Gets the membership function specified by componentIndex
argument. */
ComponentMembershipFunctionType *
GetComponentMembershipFunction(int componentIndex) const;
/** Output Membership function vector containing the membership functions with
* the final optimized parameters */
const MembershipFunctionVectorObjectType *
GetOutput() const;
protected:
ExpectationMaximizationMixtureModelEstimator();
~ExpectationMaximizationMixtureModelEstimator() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
bool
CalculateDensities();
double
CalculateExpectation() const;
bool
UpdateComponentParameters();
bool
UpdateProportions();
/** Starts the estimation process */
void
GenerateData();
private:
/** Target data sample pointer*/
const TSample * m_Sample{};
int m_MaxIteration{ 100 };
int m_CurrentIteration{ 0 };
TERMINATION_CODE_ENUM m_TerminationCode{ TERMINATION_CODE_ENUM::NOT_CONVERGED };
ComponentVectorType m_ComponentVector{};
ProportionVectorType m_InitialProportions{};
ProportionVectorType m_Proportions{};
MembershipFunctionVectorObjectPointer m_MembershipFunctionsObject{};
MembershipFunctionsWeightsArrayPointer m_MembershipFunctionsWeightArrayObject{};
}; // end of class
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkExpectationMaximizationMixtureModelEstimator.hxx"
#endif
#endif
|