File: itkGaussianMixtureModelComponent.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (126 lines) | stat: -rw-r--r-- 4,382 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkGaussianMixtureModelComponent_h
#define itkGaussianMixtureModelComponent_h

#include "itkMixtureModelComponentBase.h"
#include "itkGaussianMembershipFunction.h"
#include "itkWeightedMeanSampleFilter.h"
#include "itkWeightedCovarianceSampleFilter.h"

namespace itk
{
namespace Statistics
{
/**
 * \class GaussianMixtureModelComponent
 * \brief is a component (derived from MixtureModelComponentBase) for
 * Gaussian class. This class is used in
 * ExpectationMaximizationMixtureModelEstimator.
 *
 * On every iteration of EM estimation, this class's GenerateData
 * method is called to compute the new distribution parameters.
 *
 * <b>Recent API changes:</b>
 * The static const macro to get the length of a measurement vector,
 * \c MeasurementVectorSize  has been removed to allow the length of a measurement
 * vector to be specified at run time. It is now obtained at run time from the
 * sample set as input. Please use the function
 * GetMeasurementVectorSize() to get the length.
 *
 * \sa MixtureModelComponentBase, ExpectationMaximizationMixtureModelEstimator
 * \ingroup ITKStatistics
 */

template <typename TSample>
class ITK_TEMPLATE_EXPORT GaussianMixtureModelComponent : public MixtureModelComponentBase<TSample>
{
public:
  /**Standard class type aliases. */
  using Self = GaussianMixtureModelComponent;
  using Superclass = MixtureModelComponentBase<TSample>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /**Standard Macros */
  itkOverrideGetNameOfClassMacro(GaussianMixtureModelComponent);
  itkNewMacro(Self);

  /** Typedefs from the superclass */
  using typename Superclass::MeasurementVectorType;
  using typename Superclass::MeasurementVectorSizeType;
  using typename Superclass::MembershipFunctionType;
  using typename Superclass::WeightArrayType;
  using typename Superclass::ParametersType;

  /** Type of the membership function. Gaussian density function */
  using NativeMembershipFunctionType = GaussianMembershipFunction<MeasurementVectorType>;

  /** Types of the mean and the covariance calculator that will update
   *  this component's distribution parameters */
  using MeanEstimatorType = WeightedMeanSampleFilter<TSample>;
  using CovarianceEstimatorType = WeightedCovarianceSampleFilter<TSample>;

  /** Type of the mean vector */
  using MeanVectorType = typename MeanEstimatorType::OutputType;

  /** Type of the covariance matrix */
  using CovarianceMatrixType = typename CovarianceEstimatorType::OutputType;

  /** Sets the input sample */
  void
  SetSample(const TSample * sample) override;

  /** Sets the component's distribution parameters. */
  void
  SetParameters(const ParametersType & parameters) override;

protected:
  GaussianMixtureModelComponent();
  ~GaussianMixtureModelComponent() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Returns the sum of squared changes in parameters between
   * iterations */
  double
  CalculateParametersChange();

  /** Computes the new distribution parameters */
  void
  GenerateData() override;

private:
  typename NativeMembershipFunctionType::Pointer m_GaussianMembershipFunction{};

  typename MeanEstimatorType::MeasurementVectorType m_Mean{};

  typename CovarianceEstimatorType::MatrixType m_Covariance{};

  typename MeanEstimatorType::Pointer m_MeanEstimator{};

  typename CovarianceEstimatorType::Pointer m_CovarianceEstimator{};
}; // end of class
} // end of namespace Statistics
} // end of namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkGaussianMixtureModelComponent.hxx"
#endif

#endif