1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkHistogramToEntropyImageFilter_h
#define itkHistogramToEntropyImageFilter_h
#include "itkHistogramToImageFilter.h"
namespace itk
{
/**
* \class HistogramToEntropyImageFilter
* \brief The class takes a histogram as an input and gives the entropy
* image as the output. A pixel, at position I, in the output image is given by
*
* \f[
* f(I) = -p \log_2 p
* \f]
*
* where
* \f[
* p = \frac{q_I}{\sum_{i \in I} q_I}
* \f]
* where \f$q_I\f$ is the frequency of measurement vector, I.
*
* \f$p\f$ is the frequency of a measurement vector by the sum of all frequencies =
* Probability of the measurement vector
*
* The output image is of type double.
*
* This is useful in plotting the joint histograms during registration.
*
* \sa HistogramToImageFilter, HistogramToLogProbabilityImageFilter,
* HistogramToIntensityImageFilter, HistogramToProbabilityImageFilter
*
* \ingroup ITKStatistics
*/
namespace Function
{
template <typename TInput, typename TOutput = double>
class HistogramEntropyFunction
{
public:
// Probability function = Number of occurrences in each bin /
// Total Number of occurrences.
//
// Returns pixels of float..
using OutputPixelType = TOutput;
HistogramEntropyFunction() = default;
~HistogramEntropyFunction() = default;
inline OutputPixelType
operator()(const TInput & A) const
{
if (A)
{
const double p = static_cast<OutputPixelType>(A) / static_cast<OutputPixelType>(m_TotalFrequency);
return static_cast<OutputPixelType>((-1) * p * std::log(p) / std::log(2.0));
}
else
{
const double p = static_cast<OutputPixelType>(A + 1) / static_cast<OutputPixelType>(m_TotalFrequency);
return static_cast<OutputPixelType>((-1) * p * std::log(p) / std::log(2.0));
}
}
void
SetTotalFrequency(const SizeValueType n)
{
m_TotalFrequency = n;
}
SizeValueType
GetTotalFrequency() const
{
return m_TotalFrequency;
}
private:
SizeValueType m_TotalFrequency{ 1 };
};
} // namespace Function
template <typename THistogram, typename TImage = Image<double, 3>>
class HistogramToEntropyImageFilter
: public HistogramToImageFilter<THistogram,
TImage,
Function::HistogramEntropyFunction<SizeValueType, typename TImage::PixelType>>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(HistogramToEntropyImageFilter);
/** Standard class type aliases. */
using Self = HistogramToEntropyImageFilter;
/** Standard "Superclass" type alias. */
using Superclass =
HistogramToImageFilter<THistogram,
TImage,
Function::HistogramEntropyFunction<SizeValueType, typename TImage::PixelType>>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(HistogramToEntropyImageFilter);
/** Method for creation through the object factory. */
itkNewMacro(Self);
protected:
HistogramToEntropyImageFilter() = default;
~HistogramToEntropyImageFilter() override = default;
};
} // end namespace itk
#endif
|