1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkHistogramToLogProbabilityImageFilter_h
#define itkHistogramToLogProbabilityImageFilter_h
#include "itkHistogramToImageFilter.h"
namespace itk
{
/** \class HistogramToLogProbabilityImageFilter
* \brief The class takes a histogram as an input and gives the log probability
* image as the output. A pixel, at position I, in the output image is given by
*
* \f[
* f(I) = \log_2( \frac{q_I}{\sum_{i \in I} q_I} )
* \f]
* where \f$q_I\f$ is the frequency of measurement vector, I.
*
* This is the log of the frequency of a measurement vector by the sum of all
* frequencies.
*
* The output image is of type double.
*
* This is useful in plotting the joint histograms during registration.
*
* \sa HistogramToImageFilter, HistogramToProbabilityImageFilter,
* HistogramToIntensityImageFilter, HistogramToEntropyImageFilter
*
* \ingroup ITKStatistics
*/
namespace Function
{
template <typename TInput, typename TOutput = double>
class HistogramLogProbabilityFunction
{
public:
// Probability function = Number of occurrences in each bin /
// Total Number of occurrences.
//
// Returns pixels of float..
using OutputPixelType = TOutput;
HistogramLogProbabilityFunction() = default;
~HistogramLogProbabilityFunction() = default;
inline OutputPixelType
operator()(const TInput & A) const
{
if (A)
{
return static_cast<OutputPixelType>(
std::log(static_cast<OutputPixelType>(A) / static_cast<OutputPixelType>(m_TotalFrequency)) / std::log(2.0));
}
else
{ // Check for Log 0. Always assume that the frequency is at least 1.
return static_cast<OutputPixelType>(
std::log(static_cast<OutputPixelType>(A + 1) / static_cast<OutputPixelType>(m_TotalFrequency)) / std::log(2.0));
}
}
void
SetTotalFrequency(SizeValueType n)
{
m_TotalFrequency = n;
}
SizeValueType
GetTotalFrequency() const
{
return m_TotalFrequency;
}
private:
SizeValueType m_TotalFrequency{ 1 };
};
} // namespace Function
template <typename THistogram, typename TImage = Image<double, 3>>
class HistogramToLogProbabilityImageFilter
: public HistogramToImageFilter<THistogram,
TImage,
Function::HistogramLogProbabilityFunction<SizeValueType, typename TImage::PixelType>>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(HistogramToLogProbabilityImageFilter);
/** Standard class type aliases. */
using Self = HistogramToLogProbabilityImageFilter;
/** Standard "Superclass" type alias. */
using Superclass =
HistogramToImageFilter<THistogram,
TImage,
Function::HistogramLogProbabilityFunction<SizeValueType, typename TImage::PixelType>>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(HistogramToLogProbabilityImageFilter);
/** Method for creation through the object factory. */
itkNewMacro(Self);
protected:
HistogramToLogProbabilityImageFilter() = default;
~HistogramToLogProbabilityImageFilter() override = default;
};
} // end namespace itk
#endif
|