1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkImageToHistogramFilter_hxx
#define itkImageToHistogramFilter_hxx
#include "itkImageRegionConstIterator.h"
namespace itk
{
namespace Statistics
{
template <typename TImage>
ImageToHistogramFilter<TImage>::ImageToHistogramFilter()
{
this->SetNumberOfRequiredInputs(1);
this->SetNumberOfRequiredOutputs(1);
this->ProcessObject::SetNthOutput(0, this->MakeOutput(0));
// same default values as in the HistogramGenerator
this->Self::SetMarginalScale(100);
if (typeid(ValueType) == typeid(signed char) || typeid(ValueType) == typeid(unsigned char))
{
this->Self::SetAutoMinimumMaximum(false);
}
else
{
this->Self::SetAutoMinimumMaximum(true);
}
}
template <typename TImage>
DataObject::Pointer
ImageToHistogramFilter<TImage>::MakeOutput(DataObjectPointerArraySizeType itkNotUsed(idx))
{
return HistogramType::New().GetPointer();
}
template <typename TImage>
auto
ImageToHistogramFilter<TImage>::GetOutput() const -> const HistogramType *
{
auto * output = itkDynamicCastInDebugMode<const HistogramType *>(this->ProcessObject::GetPrimaryOutput());
return output;
}
template <typename TImage>
auto
ImageToHistogramFilter<TImage>::GetOutput() -> HistogramType *
{
auto * output = itkDynamicCastInDebugMode<HistogramType *>(this->ProcessObject::GetPrimaryOutput());
return output;
}
template <typename TImage>
void
ImageToHistogramFilter<TImage>::GraftOutput(DataObject * graft)
{
DataObject * output = const_cast<HistogramType *>(this->GetOutput());
// Call Histogram to copy meta-information, and the container
output->Graft(graft);
}
template <typename TImage>
unsigned int
ImageToHistogramFilter<TImage>::GetNumberOfInputRequestedRegions()
{
// If we need to compute the minimum and maximum we don't stream
if (this->GetAutoMinimumMaximumInput() && this->GetAutoMinimumMaximum())
{
return 1;
}
return Superclass::GetNumberOfInputRequestedRegions();
}
template <typename TImage>
void
ImageToHistogramFilter<TImage>::StreamedGenerateData(unsigned int inputRequestedRegionNumber)
{
if (inputRequestedRegionNumber == 0)
{
this->InitializeOutputHistogram();
}
Superclass::StreamedGenerateData(inputRequestedRegionNumber);
}
template <typename TImage>
void
ImageToHistogramFilter<TImage>::InitializeOutputHistogram()
{
const unsigned int nbOfComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
m_Minimum = HistogramMeasurementVectorType(nbOfComponents);
m_Maximum = HistogramMeasurementVectorType(nbOfComponents);
m_Minimum.Fill(NumericTraits<ValueType>::max());
m_Maximum.Fill(NumericTraits<ValueType>::NonpositiveMin());
m_MergeHistogram = nullptr;
HistogramType * outputHistogram = this->GetOutput();
outputHistogram->SetClipBinsAtEnds(true);
// the parameter needed to initialize the histogram
HistogramSizeType size(nbOfComponents);
if (this->GetHistogramSizeInput())
{
// user provided value
size = this->GetHistogramSize();
}
else
{
// use a default value, which must be computed at run time for the VectorImage
size.Fill(256);
}
if (this->GetAutoMinimumMaximumInput() && this->GetAutoMinimumMaximum())
{
if (this->GetInput()->GetBufferedRegion() != this->GetInput()->GetLargestPossibleRegion())
{
itkExceptionMacro("AutoMinimumMaximumInput is not supported with streaming.");
}
// we have to compute the minimum and maximum values
this->GetMultiThreader()->template ParallelizeImageRegion<ImageType::ImageDimension>(
this->GetInput()->GetBufferedRegion(),
[this](const RegionType & inputRegionForThread) { this->ThreadedComputeMinimumAndMaximum(inputRegionForThread); },
this);
this->ApplyMarginalScale(m_Minimum, m_Maximum, size);
}
else
{
if (this->GetHistogramBinMinimumInput())
{
m_Minimum = this->GetHistogramBinMinimum();
}
else
{
m_Minimum.Fill(NumericTraits<ValueType>::NonpositiveMin() - 0.5);
}
if (this->GetHistogramBinMaximumInput())
{
m_Maximum = this->GetHistogramBinMaximum();
}
else
{
m_Maximum.Fill(NumericTraits<ValueType>::max() + 0.5);
}
// No marginal scaling is applied in this case
}
outputHistogram->SetMeasurementVectorSize(nbOfComponents);
outputHistogram->Initialize(size, m_Minimum, m_Maximum);
}
template <typename TImage>
void
ImageToHistogramFilter<TImage>::AfterStreamedGenerateData()
{
Superclass::AfterStreamedGenerateData();
HistogramType * outputHistogram = this->GetOutput();
outputHistogram->Graft(m_MergeHistogram);
m_MergeHistogram = nullptr;
}
template <typename TImage>
void
ImageToHistogramFilter<TImage>::ThreadedComputeMinimumAndMaximum(const RegionType & inputRegionForThread)
{
const unsigned int nbOfComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
HistogramMeasurementVectorType min(nbOfComponents);
HistogramMeasurementVectorType max(nbOfComponents);
ImageRegionConstIterator<TImage> inputIt(this->GetInput(), inputRegionForThread);
inputIt.GoToBegin();
HistogramMeasurementVectorType m(nbOfComponents);
min.Fill(NumericTraits<ValueType>::max());
max.Fill(NumericTraits<ValueType>::NonpositiveMin());
while (!inputIt.IsAtEnd())
{
const PixelType & p = inputIt.Get();
NumericTraits<PixelType>::AssignToArray(p, m);
for (unsigned int i = 0; i < nbOfComponents; ++i)
{
min[i] = std::min(m[i], min[i]);
max[i] = std::max(m[i], max[i]);
}
++inputIt;
}
const std::lock_guard<std::mutex> lockGuard(m_Mutex);
for (unsigned int i = 0; i < nbOfComponents; ++i)
{
m_Minimum[i] = std::min(m_Minimum[i], min[i]);
m_Maximum[i] = std::max(m_Maximum[i], max[i]);
}
}
template <typename TImage>
void
ImageToHistogramFilter<TImage>::ThreadedStreamedGenerateData(const RegionType & inputRegionForThread)
{
const unsigned int nbOfComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
const HistogramType * outputHistogram = this->GetOutput();
HistogramPointer histogram = HistogramType::New();
histogram->SetClipBinsAtEnds(outputHistogram->GetClipBinsAtEnds());
histogram->SetMeasurementVectorSize(nbOfComponents);
histogram->Initialize(outputHistogram->GetSize(), m_Minimum, m_Maximum);
ImageRegionConstIterator<TImage> inputIt(this->GetInput(), inputRegionForThread);
inputIt.GoToBegin();
HistogramMeasurementVectorType m(nbOfComponents);
typename HistogramType::IndexType index;
while (!inputIt.IsAtEnd())
{
const PixelType & p = inputIt.Get();
NumericTraits<PixelType>::AssignToArray(p, m);
histogram->GetIndex(m, index);
histogram->IncreaseFrequencyOfIndex(index, 1);
++inputIt;
}
this->ThreadedMergeHistogram(std::move(histogram));
}
template <typename TImage>
void
ImageToHistogramFilter<TImage>::ThreadedMergeHistogram(HistogramPointer && histogram)
{
while (true)
{
HistogramPointer tomergeHistogram{};
{
const std::lock_guard<std::mutex> lockGuard(m_Mutex);
if (m_MergeHistogram.IsNull())
{
m_MergeHistogram = std::move(histogram);
return;
}
// merge/reduce the local results with current values in m_MergeHistogram
// take ownership locally
swap(m_MergeHistogram, tomergeHistogram);
} // release lock, allow other threads to merge data
using HistogramIterator = typename HistogramType::ConstIterator;
HistogramIterator hit = tomergeHistogram->Begin();
HistogramIterator end = tomergeHistogram->End();
typename HistogramType::IndexType index;
while (hit != end)
{
histogram->GetIndex(hit.GetMeasurementVector(), index);
histogram->IncreaseFrequencyOfIndex(index, hit.GetFrequency());
++hit;
}
}
}
template <typename TImage>
void
ImageToHistogramFilter<TImage>::ApplyMarginalScale(HistogramMeasurementVectorType & min,
HistogramMeasurementVectorType & max,
HistogramSizeType & size)
{
const unsigned int nbOfComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
bool clipHistograms = true;
for (unsigned int i = 0; i < nbOfComponents; ++i)
{
if (!NumericTraits<HistogramMeasurementType>::is_integer)
{
HistogramMeasurementType marginalScale = this->GetMarginalScale();
const double margin =
(static_cast<HistogramMeasurementType>(max[i] - min[i]) / static_cast<HistogramMeasurementType>(size[i])) /
static_cast<HistogramMeasurementType>(marginalScale);
// Now we check if the max[i] value can be increased by
// the margin value without saturating the capacity of the
// HistogramMeasurementType
if ((NumericTraits<HistogramMeasurementType>::max() - max[i]) > margin)
{
max[i] = static_cast<HistogramMeasurementType>(max[i] + margin);
}
else
{
// an overflow would occur if we add 'margin' to the max
// therefore we just compromise in setting max = max.
// Histogram measurement type would force the clipping the max
// value.
// Therefore we must call the following to include the max value:
clipHistograms = false;
// The above function is okay since here we are within the
// autoMinMax
// computation and clearly the user intended to include min and max.
}
}
else
{
// max[i] = SafeAssign(max[i] + NumericTraits<MeasurementType>::OneValue());
// if ( max[i] <= max[i] )
if (max[i] < (static_cast<ValueType>(NumericTraits<HistogramMeasurementType>::max()) -
NumericTraits<ValueType>::OneValue()))
{
max[i] = static_cast<HistogramMeasurementType>(max[i] + NumericTraits<ValueType>::OneValue());
}
else
{
// an overflow would have occurred, therefore set max to max
// Histogram measurement type would force the clipping the max
// value.
// Therefore we must call the following to include the max value:
clipHistograms = false;
// The above function is okay since here we are within the
// autoMinMax
// computation and clearly the user intended to include min and max.
}
}
}
if (clipHistograms == false)
{
this->GetOutput()->SetClipBinsAtEnds(false);
}
}
template <typename TImage>
void
ImageToHistogramFilter<TImage>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
if (this->GetHistogramBinMinimumInput())
{
os << indent << "HistogramBinMinimum: " << this->GetHistogramBinMinimum() << std::endl;
}
if (this->GetHistogramBinMaximumInput())
{
os << indent << "HistogramBinMaximum: " << this->GetHistogramBinMaximum() << std::endl;
}
os << indent << "MarginalScale: " << this->GetMarginalScale() << std::endl;
os << indent << "AutoMinimumMaximum: " << this->GetAutoMinimumMaximum() << std::endl;
if (this->GetHistogramSizeInput())
{
os << indent << "HistogramSize: " << this->GetHistogramSize() << std::endl;
}
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|