File: itkImageToHistogramFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (387 lines) | stat: -rw-r--r-- 11,979 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkImageToHistogramFilter_hxx
#define itkImageToHistogramFilter_hxx

#include "itkImageRegionConstIterator.h"

namespace itk
{
namespace Statistics
{
template <typename TImage>
ImageToHistogramFilter<TImage>::ImageToHistogramFilter()
{
  this->SetNumberOfRequiredInputs(1);
  this->SetNumberOfRequiredOutputs(1);

  this->ProcessObject::SetNthOutput(0, this->MakeOutput(0));

  // same default values as in the HistogramGenerator

  this->Self::SetMarginalScale(100);

  if (typeid(ValueType) == typeid(signed char) || typeid(ValueType) == typeid(unsigned char))
  {
    this->Self::SetAutoMinimumMaximum(false);
  }
  else
  {
    this->Self::SetAutoMinimumMaximum(true);
  }
}

template <typename TImage>
DataObject::Pointer
ImageToHistogramFilter<TImage>::MakeOutput(DataObjectPointerArraySizeType itkNotUsed(idx))
{
  return HistogramType::New().GetPointer();
}

template <typename TImage>
auto
ImageToHistogramFilter<TImage>::GetOutput() const -> const HistogramType *
{
  auto * output = itkDynamicCastInDebugMode<const HistogramType *>(this->ProcessObject::GetPrimaryOutput());

  return output;
}

template <typename TImage>
auto
ImageToHistogramFilter<TImage>::GetOutput() -> HistogramType *
{

  auto * output = itkDynamicCastInDebugMode<HistogramType *>(this->ProcessObject::GetPrimaryOutput());

  return output;
}


template <typename TImage>
void
ImageToHistogramFilter<TImage>::GraftOutput(DataObject * graft)
{
  DataObject * output = const_cast<HistogramType *>(this->GetOutput());

  // Call Histogram to copy meta-information, and the container
  output->Graft(graft);
}


template <typename TImage>
unsigned int
ImageToHistogramFilter<TImage>::GetNumberOfInputRequestedRegions()
{
  // If we need to compute the minimum and maximum we don't stream
  if (this->GetAutoMinimumMaximumInput() && this->GetAutoMinimumMaximum())
  {
    return 1;
  }

  return Superclass::GetNumberOfInputRequestedRegions();
}

template <typename TImage>
void
ImageToHistogramFilter<TImage>::StreamedGenerateData(unsigned int inputRequestedRegionNumber)
{
  if (inputRequestedRegionNumber == 0)
  {
    this->InitializeOutputHistogram();
  }

  Superclass::StreamedGenerateData(inputRequestedRegionNumber);
}


template <typename TImage>
void
ImageToHistogramFilter<TImage>::InitializeOutputHistogram()
{
  const unsigned int nbOfComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
  m_Minimum = HistogramMeasurementVectorType(nbOfComponents);
  m_Maximum = HistogramMeasurementVectorType(nbOfComponents);

  m_Minimum.Fill(NumericTraits<ValueType>::max());
  m_Maximum.Fill(NumericTraits<ValueType>::NonpositiveMin());

  m_MergeHistogram = nullptr;

  HistogramType * outputHistogram = this->GetOutput();
  outputHistogram->SetClipBinsAtEnds(true);

  // the parameter needed to initialize the histogram
  HistogramSizeType size(nbOfComponents);
  if (this->GetHistogramSizeInput())
  {
    // user provided value
    size = this->GetHistogramSize();
  }
  else
  {
    // use a default value, which must be computed at run time for the VectorImage
    size.Fill(256);
  }

  if (this->GetAutoMinimumMaximumInput() && this->GetAutoMinimumMaximum())
  {
    if (this->GetInput()->GetBufferedRegion() != this->GetInput()->GetLargestPossibleRegion())
    {
      itkExceptionMacro("AutoMinimumMaximumInput is not supported with streaming.");
    }

    // we have to compute the minimum and maximum values
    this->GetMultiThreader()->template ParallelizeImageRegion<ImageType::ImageDimension>(
      this->GetInput()->GetBufferedRegion(),
      [this](const RegionType & inputRegionForThread) { this->ThreadedComputeMinimumAndMaximum(inputRegionForThread); },
      this);


    this->ApplyMarginalScale(m_Minimum, m_Maximum, size);
  }
  else
  {
    if (this->GetHistogramBinMinimumInput())
    {
      m_Minimum = this->GetHistogramBinMinimum();
    }
    else
    {
      m_Minimum.Fill(NumericTraits<ValueType>::NonpositiveMin() - 0.5);
    }
    if (this->GetHistogramBinMaximumInput())
    {
      m_Maximum = this->GetHistogramBinMaximum();
    }
    else
    {
      m_Maximum.Fill(NumericTraits<ValueType>::max() + 0.5);
    }
    // No marginal scaling is applied in this case
  }

  outputHistogram->SetMeasurementVectorSize(nbOfComponents);
  outputHistogram->Initialize(size, m_Minimum, m_Maximum);
}


template <typename TImage>
void
ImageToHistogramFilter<TImage>::AfterStreamedGenerateData()
{
  Superclass::AfterStreamedGenerateData();

  HistogramType * outputHistogram = this->GetOutput();
  outputHistogram->Graft(m_MergeHistogram);
  m_MergeHistogram = nullptr;
}


template <typename TImage>
void
ImageToHistogramFilter<TImage>::ThreadedComputeMinimumAndMaximum(const RegionType & inputRegionForThread)
{
  const unsigned int             nbOfComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
  HistogramMeasurementVectorType min(nbOfComponents);
  HistogramMeasurementVectorType max(nbOfComponents);

  ImageRegionConstIterator<TImage> inputIt(this->GetInput(), inputRegionForThread);
  inputIt.GoToBegin();
  HistogramMeasurementVectorType m(nbOfComponents);

  min.Fill(NumericTraits<ValueType>::max());
  max.Fill(NumericTraits<ValueType>::NonpositiveMin());
  while (!inputIt.IsAtEnd())
  {
    const PixelType & p = inputIt.Get();
    NumericTraits<PixelType>::AssignToArray(p, m);
    for (unsigned int i = 0; i < nbOfComponents; ++i)
    {
      min[i] = std::min(m[i], min[i]);
      max[i] = std::max(m[i], max[i]);
    }
    ++inputIt;
  }

  const std::lock_guard<std::mutex> lockGuard(m_Mutex);
  for (unsigned int i = 0; i < nbOfComponents; ++i)
  {
    m_Minimum[i] = std::min(m_Minimum[i], min[i]);
    m_Maximum[i] = std::max(m_Maximum[i], max[i]);
  }
}

template <typename TImage>
void
ImageToHistogramFilter<TImage>::ThreadedStreamedGenerateData(const RegionType & inputRegionForThread)
{
  const unsigned int    nbOfComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
  const HistogramType * outputHistogram = this->GetOutput();

  HistogramPointer histogram = HistogramType::New();
  histogram->SetClipBinsAtEnds(outputHistogram->GetClipBinsAtEnds());
  histogram->SetMeasurementVectorSize(nbOfComponents);
  histogram->Initialize(outputHistogram->GetSize(), m_Minimum, m_Maximum);


  ImageRegionConstIterator<TImage> inputIt(this->GetInput(), inputRegionForThread);
  inputIt.GoToBegin();
  HistogramMeasurementVectorType m(nbOfComponents);

  typename HistogramType::IndexType index;
  while (!inputIt.IsAtEnd())
  {
    const PixelType & p = inputIt.Get();
    NumericTraits<PixelType>::AssignToArray(p, m);
    histogram->GetIndex(m, index);
    histogram->IncreaseFrequencyOfIndex(index, 1);
    ++inputIt;
  }

  this->ThreadedMergeHistogram(std::move(histogram));
}

template <typename TImage>
void
ImageToHistogramFilter<TImage>::ThreadedMergeHistogram(HistogramPointer && histogram)
{
  while (true)
  {
    HistogramPointer tomergeHistogram{};
    {
      const std::lock_guard<std::mutex> lockGuard(m_Mutex);

      if (m_MergeHistogram.IsNull())
      {
        m_MergeHistogram = std::move(histogram);
        return;
      }

      // merge/reduce the local results with current values in m_MergeHistogram

      // take ownership locally
      swap(m_MergeHistogram, tomergeHistogram);

    } // release lock, allow other threads to merge data

    using HistogramIterator = typename HistogramType::ConstIterator;

    HistogramIterator hit = tomergeHistogram->Begin();
    HistogramIterator end = tomergeHistogram->End();

    typename HistogramType::IndexType index;

    while (hit != end)
    {
      histogram->GetIndex(hit.GetMeasurementVector(), index);
      histogram->IncreaseFrequencyOfIndex(index, hit.GetFrequency());
      ++hit;
    }
  }
}

template <typename TImage>
void
ImageToHistogramFilter<TImage>::ApplyMarginalScale(HistogramMeasurementVectorType & min,
                                                   HistogramMeasurementVectorType & max,
                                                   HistogramSizeType &              size)
{
  const unsigned int nbOfComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
  bool               clipHistograms = true;
  for (unsigned int i = 0; i < nbOfComponents; ++i)
  {
    if (!NumericTraits<HistogramMeasurementType>::is_integer)
    {
      HistogramMeasurementType marginalScale = this->GetMarginalScale();
      const double             margin =
        (static_cast<HistogramMeasurementType>(max[i] - min[i]) / static_cast<HistogramMeasurementType>(size[i])) /
        static_cast<HistogramMeasurementType>(marginalScale);

      // Now we check if the max[i] value can be increased by
      // the margin value without saturating the capacity of the
      // HistogramMeasurementType
      if ((NumericTraits<HistogramMeasurementType>::max() - max[i]) > margin)
      {
        max[i] = static_cast<HistogramMeasurementType>(max[i] + margin);
      }
      else
      {
        // an overflow would occur if we add 'margin' to the max
        // therefore we just compromise in setting max = max.
        // Histogram measurement type would force the clipping the max
        // value.
        // Therefore we must call the following to include the max value:
        clipHistograms = false;
        // The above function is okay since here we are within the
        // autoMinMax
        // computation and clearly the user intended to include min and max.
      }
    }
    else
    {
      // max[i] = SafeAssign(max[i] + NumericTraits<MeasurementType>::OneValue());
      // if ( max[i] <= max[i] )
      if (max[i] < (static_cast<ValueType>(NumericTraits<HistogramMeasurementType>::max()) -
                    NumericTraits<ValueType>::OneValue()))
      {
        max[i] = static_cast<HistogramMeasurementType>(max[i] + NumericTraits<ValueType>::OneValue());
      }
      else
      {
        // an overflow would have occurred, therefore set max to max
        // Histogram measurement type would force the clipping the max
        // value.
        // Therefore we must call the following to include the max value:
        clipHistograms = false;
        // The above function is okay since here we are within the
        // autoMinMax
        // computation and clearly the user intended to include min and max.
      }
    }
  }
  if (clipHistograms == false)
  {
    this->GetOutput()->SetClipBinsAtEnds(false);
  }
}

template <typename TImage>
void
ImageToHistogramFilter<TImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  if (this->GetHistogramBinMinimumInput())
  {
    os << indent << "HistogramBinMinimum: " << this->GetHistogramBinMinimum() << std::endl;
  }
  if (this->GetHistogramBinMaximumInput())
  {
    os << indent << "HistogramBinMaximum: " << this->GetHistogramBinMaximum() << std::endl;
  }
  os << indent << "MarginalScale: " << this->GetMarginalScale() << std::endl;
  os << indent << "AutoMinimumMaximum: " << this->GetAutoMinimumMaximum() << std::endl;
  if (this->GetHistogramSizeInput())
  {
    os << indent << "HistogramSize: " << this->GetHistogramSize() << std::endl;
  }
}
} // end of namespace Statistics
} // end of namespace itk

#endif