1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkKdTreeGenerator_h
#define itkKdTreeGenerator_h
#include <vector>
#include "itkKdTree.h"
#include "itkStatisticsAlgorithm.h"
namespace itk
{
namespace Statistics
{
/**
* \class KdTreeGenerator
* \brief This class generates a KdTree object without centroid information.
*
* The KdTree object stores measurement vectors in a k-d tree structure
* that is a binary tree. The partition value is the median value of one
* of the k dimension (partition dimension). The partition dimension is
* determined by the spread of measurement values in each dimension. The
* partition dimension is the dimension has the widest spread. Our
* implementation of k-d tree doesn't have any construction or insertion
* logic. Users should use this class or the
* WeightedCentroidKdTreeGenerator class.
*
* The number of the measurement vectors in a terminal node is set by
* the SetBucketSize method. If we use too small number for this, it
* might cause computational overhead to calculate bound
* conditions. However, too large number will cause more distance
* calculation between the measurement vectors in a terminal node and
* the query point.
*
* To run this generator, users should provides the bucket size
* (SetBucketSize method) and the input sample (SetSample method). The
* Update method will run this generator. To get the resulting KdTree
* object, call the GetOutput method.
*
* <b>Recent API changes:</b>
* The static const macro to get the length of a measurement vector,
* 'MeasurementVectorSize' has been removed to allow the length of a measurement
* vector to be specified at run time. It is now obtained from the sample set
* as input. You may query this length using the function GetMeasurementVectorSize().
*
* \sa KdTree, KdTreeNode, KdTreeNonterminalNode, KdTreeTerminalNode,
* WeightedCentroidKdTreeGenerator
* \ingroup ITKStatistics
*
* \sphinx
* \sphinxexample{Numerics/Statistics/SpatialSearch,Spatial Search}
* \endsphinx
*/
template <typename TSample>
class ITK_TEMPLATE_EXPORT KdTreeGenerator : public Object
{
public:
ITK_DISALLOW_COPY_AND_MOVE(KdTreeGenerator);
/** Standard class type aliases */
using Self = KdTreeGenerator;
using Superclass = Object;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(KdTreeGenerator);
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** type alias alias for the source data container */
using MeasurementVectorType = typename TSample::MeasurementVectorType;
using MeasurementType = typename TSample::MeasurementType;
/** Typedef for the length of each measurement vector */
using MeasurementVectorSizeType = unsigned int;
/** Typedef for the k-d tree */
using KdTreeType = KdTree<TSample>;
/** Type alias for the k-d tree type */
using OutputType = KdTreeType;
/** Typedef for the smart pointer to the k-d tree */
using OutputPointer = typename KdTreeType::Pointer;
/** Typedef for the k-d tree node type */
using KdTreeNodeType = typename KdTreeType::KdTreeNodeType;
/** Typedef for the internal Subsample */
using SubsampleType = Subsample<TSample>;
/** Typedef for the smart pointer to the Subsample */
using SubsamplePointer = typename SubsampleType::Pointer;
/** Set/Get the input sample that provides the measurement vectors. */
void
SetSample(TSample * sample);
itkGetConstMacro(SourceSample, TSample *);
/** Sets the number of measurement vectors that can be stored in a
* terminal node. */
void
SetBucketSize(unsigned int size);
itkGetConstMacro(BucketSize, unsigned int);
/** Returns the pointer to the generated k-d tree. */
OutputPointer
GetOutput()
{
return m_Tree;
}
/** Runs this k-d tree construction algorithm. */
void
Update()
{
this->GenerateData();
}
/** Runs this k-d tree construction algorithm. */
void
GenerateData();
/** Get macro to get the length of the measurement vectors that are being
* held in the 'sample' that is passed to this class */
itkGetConstMacro(MeasurementVectorSize, unsigned int);
protected:
/** Constructor */
KdTreeGenerator();
/** Destructor */
~KdTreeGenerator() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Returns the smart pointer to the internal Subsample object. */
SubsamplePointer
GetSubsample()
{
return m_Subsample;
}
/** Nonterminal node generation routine */
virtual KdTreeNodeType *
GenerateNonterminalNode(unsigned int beginIndex,
unsigned int endIndex,
MeasurementVectorType & lowerBound,
MeasurementVectorType & upperBound,
unsigned int level);
/** Tree generation loop */
KdTreeNodeType *
GenerateTreeLoop(unsigned int beginIndex,
unsigned int endIndex,
MeasurementVectorType & lowerBound,
MeasurementVectorType & upperBound,
unsigned int level);
private:
/** Pointer to the input (source) sample */
TSample * m_SourceSample{};
/** Smart pointer to the internal Subsample object. This class needs
* a Subsample object because the partitioning process involves sorting
* and selection. */
SubsamplePointer m_Subsample{};
/** The number of measurement vectors that can be stored in a terminal
* node. */
unsigned int m_BucketSize{};
/** Pointer to the resulting k-d tree. */
OutputPointer m_Tree{};
/** Temporary lower bound for the TreeGenerationLoop */
MeasurementVectorType m_TempLowerBound{};
/** Temporary upper bound for the TreeGenerationLoop */
MeasurementVectorType m_TempUpperBound{};
/** Temporary mean for the TreeGenerationLoop */
MeasurementVectorType m_TempMean{};
/** Length of a measurement vector */
MeasurementVectorSizeType m_MeasurementVectorSize{};
}; // end of class
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkKdTreeGenerator.hxx"
#endif
#endif
|