1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkMahalanobisDistanceMetric_h
#define itkMahalanobisDistanceMetric_h
#include "vnl/vnl_vector.h"
#include "vnl/vnl_vector_ref.h"
#include "vnl/vnl_transpose.h"
#include "vnl/vnl_matrix.h"
#include "vnl/algo/vnl_matrix_inverse.h"
#include "vnl/algo/vnl_determinant.h"
#include "itkArray.h"
#include "itkDistanceMetric.h"
namespace itk
{
namespace Statistics
{
/**
* \class MahalanobisDistanceMetric
* \brief MahalanobisDistanceMetric class computes a Mahalanobis
* distance given a mean and covariance.
*
* \sa DistanceMetric
* \sa EuclideanDistanceMetric
* \sa EuclideanSquareDistanceMetric
* \ingroup ITKStatistics
*/
template <typename TVector>
class ITK_TEMPLATE_EXPORT MahalanobisDistanceMetric : public DistanceMetric<TVector>
{
public:
/** Standard class type aliases */
using Self = MahalanobisDistanceMetric;
using Superclass = DistanceMetric<TVector>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(MahalanobisDistanceMetric);
itkNewMacro(Self);
/** Typedef to represent the measurement vector type */
using typename Superclass::MeasurementVectorType;
/** Typedef to represent the length of measurement vectors */
using typename Superclass::MeasurementVectorSizeType;
/** Type used for representing the mean vector */
using MeanVectorType = typename Superclass::OriginType;
/** Type used for representing the covariance matrix */
using CovarianceMatrixType = vnl_matrix<double>;
/** Set the length of each measurement vector. */
void SetMeasurementVectorSize(MeasurementVectorSizeType) override;
/** Method to set mean */
void
SetMean(const MeanVectorType & mean);
/** Method to get mean */
const MeanVectorType &
GetMean() const;
/**
* Method to set covariance matrix
* Also, this function calculates inverse covariance and pre factor of
* MahalanobisDistance Distribution to speed up GetProbability */
void
SetCovariance(const CovarianceMatrixType & cov);
/** Method to get covariance matrix */
itkGetConstReferenceMacro(Covariance, CovarianceMatrixType);
/**
* Method to set inverse covariance matrix */
void
SetInverseCovariance(const CovarianceMatrixType & invcov);
/** Method to get covariance matrix */
itkGetConstReferenceMacro(InverseCovariance, CovarianceMatrixType);
/**
* Method to get probability of an instance. The return value is the
* value of the density function, not probability. */
double
Evaluate(const MeasurementVectorType & measurement) const override;
/** Gets the distance between x1 and x2. */
double
Evaluate(const MeasurementVectorType & x1, const MeasurementVectorType & x2) const override;
/** Set/Get tolerance values */
itkSetMacro(Epsilon, double);
itkGetConstMacro(Epsilon, double);
itkSetMacro(DoubleMax, double);
itkGetConstMacro(DoubleMax, double);
protected:
MahalanobisDistanceMetric();
~MahalanobisDistanceMetric() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
private:
MeanVectorType m_Mean{}; // mean
CovarianceMatrixType m_Covariance{}; // covariance matrix
// inverse covariance matrix which is automatically calculated
// when covariance matrix is set. This speeds up the GetProbability()
CovarianceMatrixType m_InverseCovariance{};
double m_Epsilon{ 1e-100 };
double m_DoubleMax{ 1e+20 };
void
CalculateInverseCovariance();
};
} // end of namespace Statistics
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkMahalanobisDistanceMetric.hxx"
#endif
#endif
|