1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkMeanSampleFilter_hxx
#define itkMeanSampleFilter_hxx
#include <vector>
#include "itkCompensatedSummation.h"
#include "itkMeasurementVectorTraits.h"
namespace itk
{
namespace Statistics
{
template <typename TSample>
MeanSampleFilter<TSample>::MeanSampleFilter()
{
this->ProcessObject::SetNumberOfRequiredInputs(1);
this->ProcessObject::SetNumberOfRequiredOutputs(1);
this->ProcessObject::SetNthOutput(0, this->MakeOutput(0));
}
template <typename TSample>
void
MeanSampleFilter<TSample>::SetInput(const SampleType * sample)
{
this->ProcessObject::SetNthInput(0, const_cast<SampleType *>(sample));
}
template <typename TSample>
const TSample *
MeanSampleFilter<TSample>::GetInput() const
{
return itkDynamicCastInDebugMode<const SampleType *>(this->GetPrimaryInput());
}
template <typename TSample>
auto
MeanSampleFilter<TSample>::MakeOutput(DataObjectPointerArraySizeType itkNotUsed(idx)) -> DataObjectPointer
{
MeasurementVectorRealType mean;
(void)mean; // for complainty pants : valgrind
NumericTraits<MeasurementVectorRealType>::SetLength(mean, this->GetMeasurementVectorSize());
// NumericTraits::SetLength also initializes array to zero
auto decoratedMean = MeasurementVectorDecoratedType::New();
decoratedMean->Set(mean);
return decoratedMean.GetPointer();
}
template <typename TSample>
auto
MeanSampleFilter<TSample>::GetOutput() const -> const MeasurementVectorDecoratedType *
{
return itkDynamicCastInDebugMode<const MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(0));
}
template <typename TSample>
auto
MeanSampleFilter<TSample>::GetMean() const -> const MeasurementVectorRealType
{
const MeasurementVectorDecoratedType * decorator = this->GetOutput();
return decorator->Get();
}
template <typename TSample>
auto
MeanSampleFilter<TSample>::GetMeasurementVectorSize() const -> MeasurementVectorSizeType
{
const SampleType * input = this->GetInput();
if (input)
{
return input->GetMeasurementVectorSize();
}
// Test if the Vector type knows its length
MeasurementVectorSizeType measurementVectorSize = NumericTraits<MeasurementVectorType>::GetLength({});
if (measurementVectorSize)
{
return measurementVectorSize;
}
measurementVectorSize = 1; // Otherwise set it to an innocuous value
return measurementVectorSize;
}
template <typename TSample>
void
MeanSampleFilter<TSample>::GenerateData()
{
// set up input / output
const SampleType * input = this->GetInput();
const MeasurementVectorSizeType measurementVectorSize = input->GetMeasurementVectorSize();
auto * decoratedOutput =
itkDynamicCastInDebugMode<MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(0));
MeasurementVectorRealType output = decoratedOutput->Get();
NumericTraits<MeasurementVectorRealType>::SetLength(output, this->GetMeasurementVectorSize());
// algorithm start
using MeasurementRealAccumulateType = CompensatedSummation<MeasurementRealType>;
std::vector<MeasurementRealAccumulateType> sum(measurementVectorSize);
using TotalFrequencyType = typename SampleType::TotalAbsoluteFrequencyType;
TotalFrequencyType totalFrequency{};
typename SampleType::ConstIterator iter = input->Begin();
const typename SampleType::ConstIterator end = input->End();
for (; iter != end; ++iter)
{
const MeasurementVectorType & measurement = iter.GetMeasurementVector();
const typename SampleType::AbsoluteFrequencyType frequency = iter.GetFrequency();
totalFrequency += frequency;
for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
{
const auto component = static_cast<MeasurementRealType>(measurement[dim]);
sum[dim] += (component * static_cast<MeasurementRealType>(frequency));
}
}
// compute the mean if the total frequency is different from zero
if (totalFrequency > itk::Math::eps)
{
for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
{
output[dim] = (sum[dim].GetSum() / static_cast<MeasurementRealType>(totalFrequency));
}
}
else
{
itkExceptionMacro("Total frequency was too close to zero: " << totalFrequency);
}
decoratedOutput->Set(output);
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|