1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkMembershipFunctionBase_h
#define itkMembershipFunctionBase_h
#include "itkFunctionBase.h"
#include "itkMeasurementVectorTraits.h"
#include "itkNumericTraitsCovariantVectorPixel.h"
namespace itk
{
namespace Statistics
{
/**
* \class MembershipFunctionBase
* \brief MembershipFunctionBase defines common interfaces
* for membership functions.
*
* MembershipFunctionBase is a subclass of FunctionBase which
* restricts the function type to be a membership function. Membership
* functions provide a mapping from an arbitrary domain to a set of
* real numbers. Membership functions are typically used to model or
* approximate likelihood functions, \f$p( x | i )\f$, i.e. the
* probability of the measurement \f$x\f$ belonging to a class
* \f$i\f$.
*
* The Statistics framework models random variables \f$x\f$ as
* vectors. Typical uses of MembershipFunctions include templating
* over a FixedArray, Array, Vector, or VariableLengthVector.
*
* The Evaluate() method returns the membership rank or likelihood
* that the measurement belongs to the class represented by this
* membership function.
*
* Evaluations of a single measurement across of set MembershipFunctions
* can then be passed to a DecisionRule in order to establish
* class (or group) assignment.
*
* \ingroup ITKStatistics
*/
template <typename TVector>
class ITK_TEMPLATE_EXPORT MembershipFunctionBase : public FunctionBase<TVector, double>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(MembershipFunctionBase);
/** Standard class type aliases */
using Self = MembershipFunctionBase;
using Superclass = FunctionBase<TVector, double>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(MembershipFunctionBase);
/** MeasurementVector type alias support */
using MeasurementVectorType = TVector;
/** Typedef for the length of each measurement vector */
using MeasurementVectorSizeType = unsigned int;
/** Method to get membership score (discriminant score) of an entity
* or measurement. Evaluate() maps from a vector measurement type
* to a real number. */
double
Evaluate(const MeasurementVectorType & x) const override = 0;
/** Set the length of the measurement vector. If this membership
* function is templated over a vector type that can be resized,
* the new size is set. If the vector type has a fixed size and an
* attempt is made to change its size, an exception is
* thrown. Subclasses may have to override this method if a change
* in vector size requires invalidating other instance variables,
* e.g. covariance matrices, mean vectors, etc. */
virtual void
SetMeasurementVectorSize(MeasurementVectorSizeType s)
{
// Test whether the vector type is resizable or not
if (MeasurementVectorTraits::IsResizable<MeasurementVectorType>({}))
{
// then this is a resizable vector type
//
// if the new size is the same as the previous size, just return
if (s == this->m_MeasurementVectorSize)
{
return;
}
else
{
this->m_MeasurementVectorSize = s;
this->Modified();
}
}
else
{
// If this is a non-resizable vector type
MeasurementVectorSizeType defaultLength = NumericTraits<MeasurementVectorType>::GetLength({});
// and the new length is different from the default one, then throw an
// exception
if (defaultLength != s)
{
itkExceptionMacro("Attempting to change the measurement vector size of a non-resizable vector type");
}
}
}
/** Get the length of the measurement vector */
itkGetConstMacro(MeasurementVectorSize, MeasurementVectorSizeType);
protected:
MembershipFunctionBase()
{
m_MeasurementVectorSize = NumericTraits<MeasurementVectorType>::GetLength(MeasurementVectorType());
}
~MembershipFunctionBase() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override
{
Superclass::PrintSelf(os, indent);
os << indent << "Length of measurement vectors: " << m_MeasurementVectorSize << std::endl;
}
private:
MeasurementVectorSizeType m_MeasurementVectorSize{};
}; // end of class
} // end of namespace Statistics
} // end namespace itk
#endif
|