1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkSampleClassifierFilter_h
#define itkSampleClassifierFilter_h
#include <vector>
#include "itkMembershipSample.h"
#include "itkMembershipFunctionBase.h"
#include "itkDecisionRule.h"
#include "itkProcessObject.h"
#include "itkSimpleDataObjectDecorator.h"
namespace itk
{
namespace Statistics
{
/**
* \class SampleClassifierFilter
*
* \brief Sample classification class
*
* This filter takes as input a Sample and produces as output a
* classification in the form of a MembershipSample object.
*
* \ingroup ITKStatistics
*/
template <typename TSample>
class ITK_TEMPLATE_EXPORT SampleClassifierFilter : public ProcessObject
{
public:
ITK_DISALLOW_COPY_AND_MOVE(SampleClassifierFilter);
/** Standard class type alias */
using Self = SampleClassifierFilter;
using Superclass = ProcessObject;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(SampleClassifierFilter);
itkNewMacro(Self);
/** Type of the input Sample */
using SampleType = TSample;
/** type alias Output type */
using MembershipSampleType = MembershipSample<SampleType>;
using MembershipSampleObjectPointer = typename MembershipSampleType::Pointer;
/** type alias from SampleType object */
using MeasurementType = typename SampleType::MeasurementType;
using MeasurementVectorType = typename SampleType::MeasurementVectorType;
/** type alias for the MembershipFunction */
using MembershipFunctionType = MembershipFunctionBase<MeasurementVectorType>;
using MembershipFunctionPointer = typename MembershipFunctionType::ConstPointer;
using MembershipFunctionVectorType = std::vector<MembershipFunctionPointer>;
using MembershipFunctionVectorObjectType = SimpleDataObjectDecorator<MembershipFunctionVectorType>;
using MembershipFunctionVectorObjectPointer = typename MembershipFunctionVectorObjectType::Pointer;
/** type alias for membership functions weight proportion */
using MembershipFunctionsWeightsArrayType = Array<double>;
using MembershipFunctionsWeightsArrayObjectType = SimpleDataObjectDecorator<MembershipFunctionsWeightsArrayType>;
using MembershipFunctionsWeightsArrayPointer = typename MembershipFunctionsWeightsArrayObjectType::Pointer;
using ClassLabelType = IdentifierType;
using ClassLabelVectorType = std::vector<ClassLabelType>;
using ClassLabelVectorObjectType = SimpleDataObjectDecorator<ClassLabelVectorType>;
using ClassLabelVectorObjectPointer = ClassLabelVectorObjectType::Pointer;
/** type of the decision rule */
using DecisionRuleType = DecisionRule;
using DecisionRulePointer = DecisionRuleType::ConstPointer;
/** Sets the input sample that will be classified by this filter. */
using Superclass::SetInput;
void
SetInput(const SampleType * sample);
const SampleType *
GetInput() const;
/** Returns the classification result */
const MembershipSampleType *
GetOutput() const;
/** Number of classes. This must match the number of labels and membership
* functions provided by the user, otherwise an exception will be thrown at
*/
itkSetMacro(NumberOfClasses, unsigned int);
itkGetConstMacro(NumberOfClasses, unsigned int);
/** Set/Get the decision rule. */
itkSetConstObjectMacro(DecisionRule, DecisionRuleType);
itkGetConstObjectMacro(DecisionRule, DecisionRuleType);
/** Sets input vector of class labels. The length of this vector must match
* the number of classes, otherwise an exception will be thrown at run time.
* */
void
SetClassLabels(const ClassLabelVectorObjectType * classLabels);
/** Sets input vector of membership functions. The length of this vector must match
* the number of classes, otherwise an exception will be thrown at run time.
* */
void
SetMembershipFunctions(const MembershipFunctionVectorObjectType * membershipFunctions);
/** Sets array of weights for the membership functions */
void
SetMembershipFunctionsWeightsArray(const MembershipFunctionsWeightsArrayObjectType * weightsArray);
protected:
SampleClassifierFilter();
~SampleClassifierFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Starts the classification process */
void
GenerateData() override;
/** Make a DataObject of the correct type to used as the specified
* output. This method
* is automatically called when DataObject::DisconnectPipeline() is
* called.
* \sa ProcessObject
*/
using DataObjectPointerArraySizeType = ProcessObject::DataObjectPointerArraySizeType;
using Superclass::MakeOutput;
DataObjectPointer
MakeOutput(DataObjectPointerArraySizeType idx) override;
private:
unsigned int m_NumberOfClasses{};
/** Decision Rule */
DecisionRulePointer m_DecisionRule{};
}; // end of class
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkSampleClassifierFilter.hxx"
#endif
#endif
|