1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkScalarImageToCooccurrenceMatrixFilter_h
#define itkScalarImageToCooccurrenceMatrixFilter_h
#include "itkImage.h"
#include "itkHistogram.h"
#include "itkVectorContainer.h"
#include "itkNumericTraits.h"
#include "itkProcessObject.h"
namespace itk
{
namespace Statistics
{
/** \class ScalarImageToCooccurrenceMatrixFilter
* \brief This class computes a co-occurrence matrix (histogram) from
* a given image and a mask image if provided. Cooccurrence matrices are
* used for image texture description.
*
* This filters creates a grey-level co-occurrence matrix from a N-D scalar
* image. This is the first step in texture description a la Haralick. (See
* Haralick, R.M., K. Shanmugam and I. Dinstein. 1973. Textural Features for
* Image Classification. IEEE Transactions on Systems, Man and Cybernetics.
* SMC-3(6):610-620. See also Haralick, R.M. 1979. Statistical and Structural
* Approaches to Texture. Proceedings of the IEEE, 67:786-804.)
*
* The basic idea is as follows:
* Given an image and an offset (e.g. (1, -1) for a 2-d image), grey-level
* co-occurrences are pairs of intensity values for a specific pixel and the
* pixel at that offset from the specified pixel. These co-occurrences can provide
* information about the visual texture of an image region -- for example, an
* eight-bit image of alternating pixel-wide white and black vertical lines
* would have a large number of (0, 255) and (255, 0) co-occurrences for offset
* (1, 0).
*
* The offset (or offsets) along which the co-occurrences are calculated can be
* set by the user. Traditionally, only one offset is used per histogram, and
* offset components in the range [-1, 1] are used. For rotation-invariant features,
* averages of features computed over several histograms with different offsets
* are generally used, instead of computing features from one histogram created
* with several offsets. Additionally, instead of using offsets of two or more
* pixels in any direction, multi-resolution techniques (e.g. image pyramids)
* are generally used to deal with texture at different spatial resolutions.
*
* This class calculates a 2-d histogram of all the co-occurrence pairs in the
* given image's requested region, for a given set of offsets. That is, if a given
* offset falls outside of the requested region at a particular point, that
* co-occurrence pair will not be added to the matrix.
*
* The number of histogram bins on each axis can be set (defaults to 256). Also,
* by default the histogram min and max corresponds to the largest and smallest
* possible pixel value of that pixel type. To customize the histogram bounds
* for a given image, the max and min pixel values that will be placed in the
* histogram can be set manually. NB: The min and max are INCLUSIVE.
*
* Further, the type of histogram frequency container used is an optional template
* parameter. By default, a dense container is used, but for images with little
* texture or in cases where the user wants more histogram bins, a sparse container
* can be used for the histogram instead.
*
* WARNING: This probably won't work for pixels of double or long-double type
* unless you set the histogram min and max manually. This is because the largest
* histogram bin by default has max value of the largest possible pixel value
* plus 1. For double and long-double types, whose "RealType" as defined by the
* NumericTraits class is the same, and thus cannot hold any larger values,
* this would cause a float overflow.
*
* \sa MaskedScalarImageToCooccurrenceMatrixFilter
* \sa HistogramToTextureFeaturesFilter
* \sa ScalarImageTextureCalculator
*
* \author Zachary Pincus and Glenn Pierce
*
* \ingroup ITKStatistics
*/
template <typename TImageType,
typename THistogramFrequencyContainer = DenseFrequencyContainer2,
typename TMaskImageType = TImageType>
class ITK_TEMPLATE_EXPORT ScalarImageToCooccurrenceMatrixFilter : public ProcessObject
{
public:
ITK_DISALLOW_COPY_AND_MOVE(ScalarImageToCooccurrenceMatrixFilter);
/** Standard type alias */
using Self = ScalarImageToCooccurrenceMatrixFilter;
using Superclass = ProcessObject;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ScalarImageToCooccurrenceMatrixFilter);
/** standard New() method support */
itkNewMacro(Self);
using ImageType = TImageType;
using ImagePointer = typename ImageType::Pointer;
using ImageConstPointer = typename ImageType::ConstPointer;
using PixelType = typename ImageType::PixelType;
using RegionType = typename ImageType::RegionType;
using RadiusType = typename ImageType::SizeType;
using OffsetType = typename ImageType::OffsetType;
using OffsetVector = VectorContainer<unsigned char, OffsetType>;
using OffsetVectorPointer = typename OffsetVector::Pointer;
using OffsetVectorConstPointer = typename OffsetVector::ConstPointer;
using MaskImageType = TMaskImageType;
using MaskPointer = typename MaskImageType::Pointer;
using MaskConstPointer = typename MaskImageType::ConstPointer;
using MaskPixelType = typename MaskImageType::PixelType;
using MeasurementType = typename NumericTraits<PixelType>::RealType;
using HistogramType = Histogram<MeasurementType, THistogramFrequencyContainer>;
using HistogramPointer = typename HistogramType::Pointer;
using HistogramConstPointer = typename HistogramType::ConstPointer;
using MeasurementVectorType = typename HistogramType::MeasurementVectorType;
static constexpr unsigned int DefaultBinsPerAxis = 256;
/** Get/Set the offset or offsets over which the co-occurrence pairs will be computed.
Calling either of these methods clears the previous offsets. */
itkSetConstObjectMacro(Offsets, OffsetVector);
itkGetConstObjectMacro(Offsets, OffsetVector);
void
SetOffset(const OffsetType offset);
/** Set number of histogram bins along each axis */
itkSetMacro(NumberOfBinsPerAxis, unsigned int);
itkGetConstMacro(NumberOfBinsPerAxis, unsigned int);
/** Set the min and max (inclusive) pixel value that will be placed in the
histogram */
void
SetPixelValueMinMax(PixelType min, PixelType max);
itkGetConstMacro(Min, PixelType);
itkGetConstMacro(Max, PixelType);
/** Set the calculator to normalize the histogram (divide all bins by the
total frequency). Normalization is off by default. */
itkSetMacro(Normalize, bool);
itkGetConstMacro(Normalize, bool);
itkBooleanMacro(Normalize);
/** Method to set/get the image */
using Superclass::SetInput;
void
SetInput(const ImageType * image);
const ImageType *
GetInput() const;
/** Method to set/get the mask image */
void
SetMaskImage(const MaskImageType * image);
const MaskImageType *
GetMaskImage() const;
/** method to get the Histogram */
const HistogramType *
GetOutput() const;
/** Set the pixel value of the mask that should be considered "inside" the
object. Defaults to one. */
itkSetMacro(InsidePixelValue, MaskPixelType);
itkGetConstMacro(InsidePixelValue, MaskPixelType);
protected:
ScalarImageToCooccurrenceMatrixFilter();
~ScalarImageToCooccurrenceMatrixFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
virtual void
FillHistogram(RadiusType radius, RegionType region);
virtual void
FillHistogramWithMask(RadiusType radius, RegionType region, const MaskImageType * maskImage);
/** Standard itk::ProcessObject subclass method. */
using DataObjectPointer = DataObject::Pointer;
using DataObjectPointerArraySizeType = ProcessObject::DataObjectPointerArraySizeType;
using Superclass::MakeOutput;
DataObjectPointer
MakeOutput(DataObjectPointerArraySizeType idx) override;
/** This method causes the filter to generate its output. */
void
GenerateData() override;
private:
void
NormalizeHistogram();
OffsetVectorConstPointer m_Offsets{};
PixelType m_Min{};
PixelType m_Max{};
unsigned int m_NumberOfBinsPerAxis{};
MeasurementVectorType m_LowerBound{};
MeasurementVectorType m_UpperBound{};
bool m_Normalize{};
MaskPixelType m_InsidePixelValue{};
};
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkScalarImageToCooccurrenceMatrixFilter.hxx"
#endif
#endif
|