1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkScalarImageToCooccurrenceMatrixFilter_hxx
#define itkScalarImageToCooccurrenceMatrixFilter_hxx
#include "itkConstNeighborhoodIterator.h"
#include "itkMath.h"
namespace itk
{
namespace Statistics
{
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::
ScalarImageToCooccurrenceMatrixFilter()
{
this->SetNumberOfRequiredInputs(1);
this->SetNumberOfRequiredOutputs(1);
this->ProcessObject::SetNthOutput(0, this->MakeOutput(0));
// constant for a cooccurrence matrix.
constexpr unsigned int measurementVectorSize = 2;
auto * output = const_cast<HistogramType *>(this->GetOutput());
output->SetMeasurementVectorSize(measurementVectorSize);
// initialize parameters
this->m_LowerBound.SetSize(measurementVectorSize);
this->m_UpperBound.SetSize(measurementVectorSize);
this->m_LowerBound.Fill(NumericTraits<PixelType>::NonpositiveMin());
this->m_UpperBound.Fill(NumericTraits<PixelType>::max() + 1);
this->m_Min = NumericTraits<PixelType>::NonpositiveMin();
this->m_Max = NumericTraits<PixelType>::max();
// mask inside pixel value
this->m_InsidePixelValue = NumericTraits<PixelType>::OneValue();
this->m_NumberOfBinsPerAxis = DefaultBinsPerAxis;
this->m_Normalize = false;
}
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
void
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::SetOffset(
const OffsetType offset)
{
OffsetVectorPointer offsetVector = OffsetVector::New();
offsetVector->push_back(offset);
this->SetOffsets(offsetVector);
}
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
void
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::SetInput(
const ImageType * image)
{
// Process object is not const-correct so the const_cast is required here
this->ProcessObject::SetNthInput(0, const_cast<ImageType *>(image));
}
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
void
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::SetMaskImage(
const MaskImageType * image)
{
// Process object is not const-correct so the const_cast is required here
this->ProcessObject::SetNthInput(1, const_cast<MaskImageType *>(image));
}
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
const TImageType *
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::GetInput() const
{
return itkDynamicCastInDebugMode<const ImageType *>(this->GetPrimaryInput());
}
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
const TMaskImageType *
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::GetMaskImage() const
{
return static_cast<const MaskImageType *>(this->ProcessObject::GetInput(1));
}
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
auto
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::GetOutput() const
-> const HistogramType *
{
const auto * output = static_cast<const HistogramType *>(this->ProcessObject::GetOutput(0));
return output;
}
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
typename ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::
DataObjectPointer
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::MakeOutput(
DataObjectPointerArraySizeType itkNotUsed(idx))
{
return HistogramType::New().GetPointer();
}
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
void
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::GenerateData()
{
auto * output = static_cast<HistogramType *>(this->ProcessObject::GetOutput(0));
const ImageType * input = this->GetInput();
// At this point input must be non-nullptr because the ProcessObject
// checks the number of required input to be non-nullptr pointers before
// calling this GenerateData() method.
// First, create an appropriate histogram with the right number of bins
// and mins and maxes correct for the image type.
typename HistogramType::SizeType size(output->GetMeasurementVectorSize());
size.Fill(m_NumberOfBinsPerAxis);
output->Initialize(size, m_LowerBound, m_UpperBound);
// Next, find the minimum radius that encloses all the offsets.
unsigned int minRadius = 0;
typename OffsetVector::ConstIterator offsets;
for (offsets = m_Offsets->Begin(); offsets != m_Offsets->End(); ++offsets)
{
for (unsigned int i = 0; i < offsets.Value().GetOffsetDimension(); ++i)
{
unsigned int distance = itk::Math::abs(offsets.Value()[i]);
if (distance > minRadius)
{
minRadius = distance;
}
}
}
RadiusType radius;
radius.Fill(minRadius);
const MaskImageType * maskImage = nullptr;
// Check if a mask image has been provided
//
if (this->GetNumberOfIndexedInputs() > 1)
{
maskImage = this->GetMaskImage();
}
// Now fill in the histogram
if (maskImage != nullptr)
{
this->FillHistogramWithMask(radius, input->GetRequestedRegion(), maskImage);
}
else
{
this->FillHistogram(radius, input->GetRequestedRegion());
}
// Normalize the histogram if requested
if (m_Normalize)
{
this->NormalizeHistogram();
}
}
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
void
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::FillHistogram(
RadiusType radius,
RegionType region)
{
// Iterate over all of those pixels and offsets, adding each
// co-occurrence pair to the histogram
const ImageType * input = this->GetInput();
auto * output = static_cast<HistogramType *>(this->ProcessObject::GetOutput(0));
using NeighborhoodIteratorType = ConstNeighborhoodIterator<ImageType>;
MeasurementVectorType cooccur(output->GetMeasurementVectorSize());
for (NeighborhoodIteratorType neighborIt(radius, input, region); !neighborIt.IsAtEnd(); ++neighborIt)
{
const PixelType centerPixelIntensity = neighborIt.GetCenterPixel();
if (centerPixelIntensity < m_Min || centerPixelIntensity > m_Max)
{
continue; // don't put a pixel in the histogram if the value
// is out-of-bounds.
}
typename OffsetVector::ConstIterator offsets;
typename HistogramType::IndexType index;
for (offsets = m_Offsets->Begin(); offsets != m_Offsets->End(); ++offsets)
{
bool pixelInBounds;
const PixelType pixelIntensity = neighborIt.GetPixel(offsets.Value(), pixelInBounds);
if (!pixelInBounds)
{
continue; // don't put a pixel in the histogram if it's out-of-bounds.
}
if (pixelIntensity < m_Min || pixelIntensity > m_Max)
{
continue; // don't put a pixel in the histogram if the value
// is out-of-bounds.
}
// Now make both possible co-occurrence combinations and increment the
// histogram with them.
cooccur[0] = centerPixelIntensity;
cooccur[1] = pixelIntensity;
output->GetIndex(cooccur, index);
output->IncreaseFrequencyOfIndex(index, 1);
cooccur[1] = centerPixelIntensity;
cooccur[0] = pixelIntensity;
output->GetIndex(cooccur, index);
output->IncreaseFrequencyOfIndex(index, 1);
}
}
}
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
void
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::FillHistogramWithMask(
RadiusType radius,
RegionType region,
const MaskImageType * maskImage)
{
// Iterate over all of those pixels and offsets, adding each
// co-occurrence pair to the histogram
const ImageType * input = this->GetInput();
auto * output = static_cast<HistogramType *>(this->ProcessObject::GetOutput(0));
// Iterate over all of those pixels and offsets, adding each
// co-occurrence pair to the histogram
using NeighborhoodIteratorType = ConstNeighborhoodIterator<ImageType>;
NeighborhoodIteratorType neighborIt(radius, input, region);
using MaskNeighborhoodIteratorType = ConstNeighborhoodIterator<MaskImageType>;
MaskNeighborhoodIteratorType maskNeighborIt(radius, maskImage, region);
MeasurementVectorType cooccur(output->GetMeasurementVectorSize());
typename HistogramType::IndexType index;
for (neighborIt.GoToBegin(), maskNeighborIt.GoToBegin(); !neighborIt.IsAtEnd(); ++neighborIt, ++maskNeighborIt)
{
if (maskNeighborIt.GetCenterPixel() != m_InsidePixelValue)
{
continue; // Go to the next loop if we're not in the mask
}
const PixelType centerPixelIntensity = neighborIt.GetCenterPixel();
if (centerPixelIntensity < this->GetMin() || centerPixelIntensity > this->GetMax())
{
continue; // don't put a pixel in the histogram if the value
// is out-of-bounds.
}
typename OffsetVector::ConstIterator offsets;
for (offsets = this->GetOffsets()->Begin(); offsets != this->GetOffsets()->End(); ++offsets)
{
if (maskNeighborIt.GetPixel(offsets.Value()) != m_InsidePixelValue)
{
continue; // Go to the next loop if we're not in the mask
}
bool pixelInBounds;
const PixelType pixelIntensity = neighborIt.GetPixel(offsets.Value(), pixelInBounds);
if (!pixelInBounds)
{
continue; // don't put a pixel in the histogram if it's out-of-bounds.
}
if (pixelIntensity < this->GetMin() || pixelIntensity > this->GetMax())
{
continue; // don't put a pixel in the histogram if the value
// is out-of-bounds.
}
// Now make both possible co-occurrence combinations and increment the
// histogram with them.
cooccur[0] = centerPixelIntensity;
cooccur[1] = pixelIntensity;
output->GetIndex(cooccur, index);
output->IncreaseFrequencyOfIndex(index, 1);
cooccur[1] = centerPixelIntensity;
cooccur[0] = pixelIntensity;
output->GetIndex(cooccur, index);
output->IncreaseFrequencyOfIndex(index, 1);
}
}
}
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
void
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::NormalizeHistogram()
{
auto * output = static_cast<HistogramType *>(this->ProcessObject::GetOutput(0));
typename HistogramType::AbsoluteFrequencyType totalFrequency = output->GetTotalFrequency();
typename HistogramType::Iterator hit = output->Begin();
while (hit != output->End())
{
hit.SetFrequency(hit.GetFrequency() / totalFrequency);
++hit;
}
}
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
void
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::SetPixelValueMinMax(
PixelType min,
PixelType max)
{
itkDebugMacro("setting Min to " << min << "and Max to " << max);
m_Min = min;
m_Max = max;
m_LowerBound.Fill(min);
m_UpperBound.Fill(max + 1);
this->Modified();
}
template <typename TImageType, typename THistogramFrequencyContainer, typename TMaskImageType>
void
ScalarImageToCooccurrenceMatrixFilter<TImageType, THistogramFrequencyContainer, TMaskImageType>::PrintSelf(
std::ostream & os,
Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Offsets: " << this->GetOffsets() << std::endl;
os << indent << "Min: " << this->GetMin() << std::endl;
os << indent << "Max: " << this->GetMax() << std::endl;
os << indent << "NumberOfBinsPerAxis: " << this->GetNumberOfBinsPerAxis() << std::endl;
os << indent << "Normalize: " << this->GetNormalize() << std::endl;
os << indent << "InsidePixelValue: " << this->GetInsidePixelValue() << std::endl;
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|