1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkStandardDeviationPerComponentSampleFilter_h
#define itkStandardDeviationPerComponentSampleFilter_h
#include "itkProcessObject.h"
#include "itkVariableSizeMatrix.h"
#include "itkSimpleDataObjectDecorator.h"
#include "itkNumericTraitsFixedArrayPixel.h"
namespace itk
{
namespace Statistics
{
/**
* \class StandardDeviationPerComponentSampleFilter
* \brief Calculates the covariance matrix of the target sample data.
*
* The filter calculates first the sample mean and use it in the covariance
* calculation. The covariance is computed as follows
* Let \f$\Sigma\f$ denotes covariance matrix for the sample, then:
* When \f$x_{i}\f$ is \f$i\f$th component of a measurement vector
* \f$\vec x\f$, \f$\mu_{i}\f$ is the \f$i\f$th component of the \f$\vec\mu\f$,
* and the \f$\sigma_{ij}\f$ is the \f$ij\f$th component \f$\Sigma\f$,
* \f$\sigma_{ij} = (x_{i} - \mu_{i})(x_{j} - \mu_{j})\f$
*
* Without the plugged in mean vector, this calculator will perform
* the single pass mean and covariance calculation algorithm.
*
* \ingroup ITKStatistics
*/
template <typename TSample>
class ITK_TEMPLATE_EXPORT StandardDeviationPerComponentSampleFilter : public ProcessObject
{
public:
ITK_DISALLOW_COPY_AND_MOVE(StandardDeviationPerComponentSampleFilter);
/** Standard class type aliases. */
using Self = StandardDeviationPerComponentSampleFilter;
using Superclass = ProcessObject;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using SampleType = TSample;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(StandardDeviationPerComponentSampleFilter);
itkNewMacro(Self);
/** Length of a measurement vector */
using MeasurementVectorSizeType = typename TSample::MeasurementVectorSizeType;
/** Measurement vector type */
using MeasurementVectorType = typename TSample::MeasurementVectorType;
using MeasurementVectorRealType = typename NumericTraits<MeasurementVectorType>::RealType;
/** Method to set/get the sample */
using Superclass::SetInput;
void
SetInput(const SampleType * sample);
const SampleType *
GetInput() const;
/** MeasurementVector is not a DataObject, we need to decorate it to push it down
* a ProcessObject's pipeline */
using MeasurementVectorRealDecoratedType = SimpleDataObjectDecorator<MeasurementVectorRealType>;
using OutputType = MeasurementVectorRealDecoratedType;
/** Return the standard deviation vector */
const MeasurementVectorRealType
GetStandardDeviationPerComponent() const;
const MeasurementVectorRealDecoratedType *
GetStandardDeviationPerComponentOutput() const;
/** Return the mean vector */
const MeasurementVectorRealType
GetMeanPerComponent() const;
const MeasurementVectorRealDecoratedType *
GetMeanPerComponentOutput() const;
protected:
StandardDeviationPerComponentSampleFilter();
~StandardDeviationPerComponentSampleFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** DataObject pointer */
using DataObjectPointer = DataObject::Pointer;
using DataObjectPointerArraySizeType = ProcessObject::DataObjectPointerArraySizeType;
using Superclass::MakeOutput;
DataObjectPointer
MakeOutput(DataObjectPointerArraySizeType index) override;
void
GenerateData() override;
MeasurementVectorSizeType
GetMeasurementVectorSize() const;
private:
}; // end of class
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkStandardDeviationPerComponentSampleFilter.hxx"
#endif
#endif
|