1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkSubsamplerBase_h
#define itkSubsamplerBase_h
#include "itkObject.h"
#include "itkSample.h"
#include "itkSubsample.h"
namespace itk
{
namespace Statistics
{
/**
* \class SubsamplerBase
* \brief This is the base subsampler class which defines the subsampler API.
*
* This class will search a Sample provided by SetSample and return a
* Subsample that are related in some way to the queried value.
* Some examples of subsampling strategies include uniform random selection,
* selection based on KdTree, and selection based on spatial proximity.
*
* This is an Abstract class that can not be instantiated.
* There are multiple subsamplers that derive from this class and
* provide specific implementations of subsampling strategies.
*
* \sa RegionConstrainedSubsampler, SpatialNeighborSubsampler
* \sa GaussianRandomSpatialNeighborSubsampler
* \sa UniformRandomSpatialNeighborSubsampler
* \ingroup ITKStatistics
*/
template <typename TSample>
class ITK_TEMPLATE_EXPORT SubsamplerBase : public Object
{
public:
ITK_DISALLOW_COPY_AND_MOVE(SubsamplerBase);
/** Standard class type aliases */
using Self = SubsamplerBase;
using Superclass = Object;
using Baseclass = Self;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(SubsamplerBase);
/** implement type-specific clone method */
itkCloneMacro(Self);
/** type alias alias for the source data container */
using SampleType = TSample;
using SampleConstPointer = typename SampleType::ConstPointer;
using MeasurementVectorType = typename TSample::MeasurementVectorType;
using InstanceIdentifier = typename TSample::InstanceIdentifier;
using SubsampleType = Subsample<TSample>;
using SubsamplePointer = typename SubsampleType::Pointer;
using SubsampleConstIterator = typename SubsampleType::ConstIterator;
using InstanceIdentifierHolder = typename SubsampleType::InstanceIdentifierHolder;
using SeedType = unsigned int;
/** Plug in the actual sample data */
itkSetConstObjectMacro(Sample, SampleType);
itkGetConstObjectMacro(Sample, SampleType);
/** Indicate whether the Search method can return the query point
* as one element of the Subsample
*/
itkSetMacro(CanSelectQuery, bool);
itkGetConstReferenceMacro(CanSelectQuery, bool);
itkBooleanMacro(CanSelectQuery);
/** Provide an interface to set the seed.
* The seed value will be used by subclasses where appropriate.
*/
itkSetMacro(Seed, SeedType);
itkGetConstReferenceMacro(Seed, SeedType);
/** Specify whether the subsampler should return all possible
* matches. */
virtual void
RequestMaximumNumberOfResults()
{
if (!this->m_RequestMaximumNumberOfResults)
{
this->m_RequestMaximumNumberOfResults = true;
this->Modified();
}
}
/** Main Search method that MUST be implemented by each subclass
* The Search method will find all points similar to query and return
* them as a Subsample. The definition of similar will be subclass-
* specific. And could mean spatial similarity or feature similarity
* etc. */
virtual void
Search(const InstanceIdentifier & query, SubsamplePointer & results) = 0;
protected:
/**
* Clone the current subsampler.
* This does a complete copy of the subsampler state
* to the new subsampler
*/
typename LightObject::Pointer
InternalClone() const override;
SubsamplerBase();
~SubsamplerBase() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
SampleConstPointer m_Sample{};
bool m_RequestMaximumNumberOfResults{};
bool m_CanSelectQuery{};
SeedType m_Seed{};
}; // end of class SubsamplerBase
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkSubsamplerBase.hxx"
#endif
#endif
|