File: itkWeightedCovarianceSampleFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (256 lines) | stat: -rw-r--r-- 8,260 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkWeightedCovarianceSampleFilter_hxx
#define itkWeightedCovarianceSampleFilter_hxx

#include "itkWeightedMeanSampleFilter.h"

namespace itk
{
namespace Statistics
{
template <typename TSample>
WeightedCovarianceSampleFilter<TSample>::WeightedCovarianceSampleFilter()
{
  this->ProcessObject::SetNthInput(1, nullptr);
}

template <typename TSample>
inline void
WeightedCovarianceSampleFilter<TSample>::GenerateData()
{
  // if weighting function is specified, use it to compute the mean
  const InputWeightingFunctionObjectType * functionObject = this->GetWeightingFunctionInput();

  if (functionObject != nullptr)
  {
    this->ComputeCovarianceMatrixWithWeightingFunction();
    return;
  }

  // if weight array is specified use it to compute the covariance
  const InputWeightArrayObjectType * weightArrayObject = this->GetWeightsInput();

  if (weightArrayObject != nullptr)
  {
    this->ComputeCovarianceMatrixWithWeights();
    return;
  }

  // Otherwise compute the regular covariance matrix ( without weight
  // coefficients)
  Superclass::GenerateData();
}

template <typename TSample>
inline void
WeightedCovarianceSampleFilter<TSample>::ComputeCovarianceMatrixWithWeightingFunction()
{
  // set up input / output
  const SampleType * input = this->GetInput();

  MeasurementVectorSizeType measurementVectorSize = input->GetMeasurementVectorSize();

  auto * decoratedOutput = itkDynamicCastInDebugMode<MatrixDecoratedType *>(this->ProcessObject::GetOutput(0));

  MatrixType output = decoratedOutput->Get();
  output.SetSize(measurementVectorSize, measurementVectorSize);
  output.Fill(typename MatrixType::ValueType{});

  auto * decoratedMeanOutput =
    itkDynamicCastInDebugMode<MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(1));

  // calculate mean
  const WeightingFunctionType * const weightingFunction = this->GetWeightingFunction();

  using WeightedMeanFilterType = WeightedMeanSampleFilter<SampleType>;
  auto meanFilter = WeightedMeanFilterType::New();

  meanFilter->SetInput(input);
  meanFilter->SetWeightingFunction(weightingFunction);
  meanFilter->Update();

  const typename WeightedMeanFilterType::MeasurementVectorRealType mean = meanFilter->GetMean();
  decoratedMeanOutput->Set(mean);

  // covariance algorithm
  MeasurementVectorRealType diff;
  NumericTraits<MeasurementVectorRealType>::SetLength(diff, measurementVectorSize);

  WeightValueType totalWeight{};

  WeightValueType totalSquaredWeight{};

  typename SampleType::ConstIterator       iter = input->Begin();
  const typename SampleType::ConstIterator end = input->End();

  // fills the lower triangle and the diagonal cells in the covariance matrix
  for (; iter != end; ++iter)
  {
    const MeasurementVectorType & measurement = iter.GetMeasurementVector();

    const typename SampleType::AbsoluteFrequencyType frequency = iter.GetFrequency();

    const WeightValueType rawWeight = weightingFunction->Evaluate(measurement);

    const WeightValueType weight = (rawWeight * static_cast<WeightValueType>(frequency));
    totalWeight += weight;
    totalSquaredWeight += (weight * weight);

    for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
    {
      const auto component = static_cast<MeasurementRealType>(measurement[dim]);

      diff[dim] = (component - mean[dim]);
    }

    // updates the covariance matrix
    for (unsigned int row = 0; row < measurementVectorSize; ++row)
    {
      for (unsigned int col = 0; col < row + 1; ++col)
      {
        output(row, col) += (static_cast<MeasurementRealType>(weight) * diff[row] * diff[col]);
      }
    }
  }

  // fills the upper triangle using the lower triangle
  for (unsigned int row = 1; row < measurementVectorSize; ++row)
  {
    for (unsigned int col = 0; col < row; ++col)
    {
      output(col, row) = output(row, col);
    }
  }

  const double normalizationFactor = (totalWeight - (totalSquaredWeight / totalWeight));

  if (normalizationFactor > itk::Math::eps)
  {
    const double inverseNormalizationFactor = 1.0 / normalizationFactor;

    output *= inverseNormalizationFactor;
  }
  else
  {
    itkExceptionMacro("Normalization factor was too close to zero. Value = " << normalizationFactor);
  }

  decoratedOutput->Set(output);
}

template <typename TSample>
inline void
WeightedCovarianceSampleFilter<TSample>::ComputeCovarianceMatrixWithWeights()
{
  // set up input / output
  const SampleType * input = this->GetInput();

  MeasurementVectorSizeType measurementVectorSize = input->GetMeasurementVectorSize();

  auto * decoratedOutput = itkDynamicCastInDebugMode<MatrixDecoratedType *>(this->ProcessObject::GetOutput(0));

  MatrixType output = decoratedOutput->Get();
  output.SetSize(measurementVectorSize, measurementVectorSize);
  output.Fill(typename MatrixType::ValueType{});

  auto * decoratedMeanOutput =
    itkDynamicCastInDebugMode<MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(1));

  // calculate mean
  const WeightArrayType & weightsArray = this->GetWeights();

  using WeightedMeanFilterType = WeightedMeanSampleFilter<SampleType>;
  auto meanFilter = WeightedMeanFilterType::New();

  meanFilter->SetInput(input);
  meanFilter->SetWeights(weightsArray);
  meanFilter->Update();

  const typename WeightedMeanFilterType::MeasurementVectorRealType mean = meanFilter->GetMean();
  decoratedMeanOutput->Set(mean);

  // covariance algorithm
  MeasurementVectorRealType diff;
  NumericTraits<MeasurementVectorRealType>::SetLength(diff, measurementVectorSize);

  WeightValueType totalWeight{};

  WeightValueType totalSquaredWeight{};

  typename SampleType::ConstIterator       iter = input->Begin();
  const typename SampleType::ConstIterator end = input->End();

  // fills the lower triangle and the diagonal cells in the covariance matrix
  for (unsigned int sampleVectorIndex = 0; iter != end; ++iter, ++sampleVectorIndex)
  {
    const MeasurementVectorType & measurement = iter.GetMeasurementVector();

    const typename SampleType::AbsoluteFrequencyType frequency = iter.GetFrequency();

    const WeightValueType rawWeight = weightsArray[sampleVectorIndex];

    const WeightValueType weight = (rawWeight * static_cast<WeightValueType>(frequency));
    totalWeight += weight;
    totalSquaredWeight += (weight * weight);

    for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
    {
      const auto component = static_cast<MeasurementRealType>(measurement[dim]);

      diff[dim] = (component - mean[dim]);
    }

    // updates the covariance matrix
    for (unsigned int row = 0; row < measurementVectorSize; ++row)
    {
      for (unsigned int col = 0; col < row + 1; ++col)
      {
        output(row, col) += (static_cast<MeasurementRealType>(weight) * diff[row] * diff[col]);
      }
    }
  }

  // fills the upper triangle using the lower triangle
  for (unsigned int row = 1; row < measurementVectorSize; ++row)
  {
    for (unsigned int col = 0; col < row; ++col)
    {
      output(col, row) = output(row, col);
    }
  }

  const double normalizationFactor = (totalWeight - (totalSquaredWeight / totalWeight));

  if (normalizationFactor > itk::Math::eps)
  {
    const double inverseNormalizationFactor = 1.0 / normalizationFactor;

    output *= inverseNormalizationFactor;
  }
  else
  {
    itkExceptionMacro("Normalization factor was too close to zero. Value = " << normalizationFactor);
  }

  decoratedOutput->Set(output);
}
} // end of namespace Statistics
} // end of namespace itk

#endif