1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkWeightedMeanSampleFilter_hxx
#define itkWeightedMeanSampleFilter_hxx
#include <vector>
#include "itkCompensatedSummation.h"
#include "itkMeasurementVectorTraits.h"
namespace itk
{
namespace Statistics
{
template <typename TSample>
WeightedMeanSampleFilter<TSample>::WeightedMeanSampleFilter()
{
this->ProcessObject::SetNthInput(1, nullptr);
}
template <typename TSample>
void
WeightedMeanSampleFilter<TSample>::GenerateData()
{
// if weighting function is specified, use it to compute the mean
const InputWeightingFunctionObjectType * functionObject = this->GetWeightingFunctionInput();
if (functionObject != nullptr)
{
this->ComputeMeanWithWeightingFunction();
return;
}
// if weight array is specified use it to compute the mean
const InputWeightArrayObjectType * weightArrayObject = this->GetWeightsInput();
if (weightArrayObject != nullptr)
{
this->ComputeMeanWithWeights();
return;
}
// Otherwise compute the regular mean ( without weight coefficients)
Superclass::GenerateData();
}
template <typename TSample>
void
WeightedMeanSampleFilter<TSample>::ComputeMeanWithWeights()
{
// set up input / output
const SampleType * input = this->GetInput();
const MeasurementVectorSizeType measurementVectorSize = input->GetMeasurementVectorSize();
auto * decoratedOutput =
itkDynamicCastInDebugMode<MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(0));
MeasurementVectorRealType output = decoratedOutput->Get();
NumericTraits<MeasurementVectorRealType>::SetLength(output, this->GetMeasurementVectorSize());
// algorithm start
using MeasurementRealAccumulateType = CompensatedSummation<MeasurementRealType>;
std::vector<MeasurementRealAccumulateType> sum(measurementVectorSize);
const WeightArrayType & weightsArray = this->GetWeights();
WeightValueType totalWeight{};
typename SampleType::ConstIterator iter = input->Begin();
typename SampleType::ConstIterator end = input->End();
for (unsigned int sampleVectorIndex = 0; iter != end; ++iter, ++sampleVectorIndex)
{
const MeasurementVectorType & measurement = iter.GetMeasurementVector();
const typename SampleType::AbsoluteFrequencyType frequency = iter.GetFrequency();
const WeightValueType rawWeight = weightsArray[sampleVectorIndex];
const WeightValueType weight = (rawWeight * static_cast<WeightValueType>(frequency));
totalWeight += weight;
for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
{
const auto component = static_cast<MeasurementRealType>(measurement[dim]);
sum[dim] += (component * weight);
}
}
if (totalWeight > itk::Math::eps)
{
for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
{
output[dim] = (sum[dim].GetSum() / static_cast<MeasurementRealType>(totalWeight));
}
}
else
{
itkExceptionMacro("Total weight was too close to zero. Value = " << totalWeight);
}
decoratedOutput->Set(output);
}
template <typename TSample>
void
WeightedMeanSampleFilter<TSample>::ComputeMeanWithWeightingFunction()
{
// set up input / output
const SampleType * input = this->GetInput();
const MeasurementVectorSizeType measurementVectorSize = input->GetMeasurementVectorSize();
auto * decoratedOutput =
itkDynamicCastInDebugMode<MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(0));
MeasurementVectorRealType output = decoratedOutput->Get();
NumericTraits<MeasurementVectorRealType>::SetLength(output, this->GetMeasurementVectorSize());
// algorithm start
using MeasurementRealAccumulateType = CompensatedSummation<MeasurementRealType>;
std::vector<MeasurementRealAccumulateType> sum(measurementVectorSize);
const WeightingFunctionType * const weightFunction = this->GetWeightingFunction();
WeightValueType totalWeight{};
typename SampleType::ConstIterator iter = input->Begin();
const typename SampleType::ConstIterator end = input->End();
for (; iter != end; ++iter)
{
const MeasurementVectorType & measurement = iter.GetMeasurementVector();
const typename SampleType::AbsoluteFrequencyType frequency = iter.GetFrequency();
const WeightValueType rawWeight = weightFunction->Evaluate(measurement);
const WeightValueType weight = (rawWeight * static_cast<WeightValueType>(frequency));
totalWeight += weight;
for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
{
const auto component = static_cast<MeasurementRealType>(measurement[dim]);
sum[dim] += (component * weight);
}
}
if (totalWeight > itk::Math::eps)
{
for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
{
output[dim] = (sum[dim].GetSum() / static_cast<MeasurementRealType>(totalWeight));
}
}
else
{
itkExceptionMacro("Total weight was too close to zero. Value = " << totalWeight);
}
decoratedOutput->Set(output);
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|