File: itkWeightedMeanSampleFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (186 lines) | stat: -rw-r--r-- 5,757 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkWeightedMeanSampleFilter_hxx
#define itkWeightedMeanSampleFilter_hxx


#include <vector>
#include "itkCompensatedSummation.h"
#include "itkMeasurementVectorTraits.h"

namespace itk
{
namespace Statistics
{
template <typename TSample>
WeightedMeanSampleFilter<TSample>::WeightedMeanSampleFilter()
{
  this->ProcessObject::SetNthInput(1, nullptr);
}

template <typename TSample>
void
WeightedMeanSampleFilter<TSample>::GenerateData()
{
  // if weighting function is specified, use it to compute the mean
  const InputWeightingFunctionObjectType * functionObject = this->GetWeightingFunctionInput();

  if (functionObject != nullptr)
  {
    this->ComputeMeanWithWeightingFunction();
    return;
  }

  // if weight array is specified use it to compute the mean
  const InputWeightArrayObjectType * weightArrayObject = this->GetWeightsInput();

  if (weightArrayObject != nullptr)
  {
    this->ComputeMeanWithWeights();
    return;
  }

  // Otherwise compute the regular mean ( without weight coefficients)
  Superclass::GenerateData();
}

template <typename TSample>
void
WeightedMeanSampleFilter<TSample>::ComputeMeanWithWeights()
{
  // set up input / output
  const SampleType * input = this->GetInput();

  const MeasurementVectorSizeType measurementVectorSize = input->GetMeasurementVectorSize();

  auto * decoratedOutput =
    itkDynamicCastInDebugMode<MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(0));

  MeasurementVectorRealType output = decoratedOutput->Get();

  NumericTraits<MeasurementVectorRealType>::SetLength(output, this->GetMeasurementVectorSize());

  // algorithm start
  using MeasurementRealAccumulateType = CompensatedSummation<MeasurementRealType>;
  std::vector<MeasurementRealAccumulateType> sum(measurementVectorSize);

  const WeightArrayType & weightsArray = this->GetWeights();

  WeightValueType totalWeight{};

  typename SampleType::ConstIterator iter = input->Begin();
  typename SampleType::ConstIterator end = input->End();

  for (unsigned int sampleVectorIndex = 0; iter != end; ++iter, ++sampleVectorIndex)
  {
    const MeasurementVectorType & measurement = iter.GetMeasurementVector();

    const typename SampleType::AbsoluteFrequencyType frequency = iter.GetFrequency();

    const WeightValueType rawWeight = weightsArray[sampleVectorIndex];

    const WeightValueType weight = (rawWeight * static_cast<WeightValueType>(frequency));
    totalWeight += weight;

    for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
    {
      const auto component = static_cast<MeasurementRealType>(measurement[dim]);

      sum[dim] += (component * weight);
    }
  }

  if (totalWeight > itk::Math::eps)
  {
    for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
    {
      output[dim] = (sum[dim].GetSum() / static_cast<MeasurementRealType>(totalWeight));
    }
  }
  else
  {
    itkExceptionMacro("Total weight was too close to zero. Value = " << totalWeight);
  }

  decoratedOutput->Set(output);
}

template <typename TSample>
void
WeightedMeanSampleFilter<TSample>::ComputeMeanWithWeightingFunction()
{
  // set up input / output
  const SampleType * input = this->GetInput();

  const MeasurementVectorSizeType measurementVectorSize = input->GetMeasurementVectorSize();

  auto * decoratedOutput =
    itkDynamicCastInDebugMode<MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(0));

  MeasurementVectorRealType output = decoratedOutput->Get();

  NumericTraits<MeasurementVectorRealType>::SetLength(output, this->GetMeasurementVectorSize());

  // algorithm start
  using MeasurementRealAccumulateType = CompensatedSummation<MeasurementRealType>;
  std::vector<MeasurementRealAccumulateType> sum(measurementVectorSize);

  const WeightingFunctionType * const weightFunction = this->GetWeightingFunction();

  WeightValueType totalWeight{};

  typename SampleType::ConstIterator       iter = input->Begin();
  const typename SampleType::ConstIterator end = input->End();

  for (; iter != end; ++iter)
  {
    const MeasurementVectorType & measurement = iter.GetMeasurementVector();

    const typename SampleType::AbsoluteFrequencyType frequency = iter.GetFrequency();

    const WeightValueType rawWeight = weightFunction->Evaluate(measurement);

    const WeightValueType weight = (rawWeight * static_cast<WeightValueType>(frequency));
    totalWeight += weight;

    for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
    {
      const auto component = static_cast<MeasurementRealType>(measurement[dim]);

      sum[dim] += (component * weight);
    }
  }

  if (totalWeight > itk::Math::eps)
  {
    for (unsigned int dim = 0; dim < measurementVectorSize; ++dim)
    {
      output[dim] = (sum[dim].GetSum() / static_cast<MeasurementRealType>(totalWeight));
    }
  }
  else
  {
    itkExceptionMacro("Total weight was too close to zero. Value = " << totalWeight);
  }

  decoratedOutput->Set(output);
}
} // end of namespace Statistics
} // end of namespace itk

#endif