File: itkCovarianceSampleFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (178 lines) | stat: -rw-r--r-- 5,677 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageToListSampleFilter.h"
#include "itkCovarianceSampleFilter.h"
#include "itkImageRegionIterator.h"

int
itkCovarianceSampleFilterTest(int, char *[])
{
  std::cout << "CovarianceSampleFilter Test \n \n";

  // Now generate an image
  enum
  {
    MeasurementVectorSize = 3
  };
  using MeasurementType = float;

  using MeasurementVectorType = itk::FixedArray<MeasurementType, MeasurementVectorSize>;
  using ImageType = itk::Image<MeasurementVectorType, 3>;
  using MaskImageType = itk::Image<unsigned char, 3>;

  auto                  image = ImageType::New();
  ImageType::RegionType region;
  ImageType::SizeType   size;
  ImageType::IndexType  index;
  index.Fill(0);
  size.Fill(5);
  region.SetIndex(index);
  region.SetSize(size);


  image->SetBufferedRegion(region);
  image->Allocate();

  using ImageIterator = itk::ImageRegionIterator<ImageType>;
  ImageIterator iter(image, region);

  unsigned int          count = 0;
  MeasurementVectorType temp;
  temp.Fill(0);

  // fill the image
  while (!iter.IsAtEnd())
  {
    temp[0] = count;
    iter.Set(temp);
    ++iter;
    ++count;
  }

  // creates an ImageToListSampleAdaptor object
  using ImageToListSampleFilterType = itk::Statistics::ImageToListSampleFilter<ImageType, MaskImageType>;

  auto sampleGeneratingFilter = ImageToListSampleFilterType::New();

  sampleGeneratingFilter->SetInput(image);

  try
  {
    sampleGeneratingFilter->Update();
  }
  catch (const itk::ExceptionObject & excp)
  {
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
  }

  using ListSampleType = ImageToListSampleFilterType::ListSampleType;
  using CovarianceSampleFilterType = itk::Statistics::CovarianceSampleFilter<ListSampleType>;

  auto covarianceFilter = CovarianceSampleFilterType::New();

  std::cout << "GetNameOfClass() = " << covarianceFilter->GetNameOfClass() << std::endl;

  // Invoke update before adding an input. An exception should be
  try
  {
    covarianceFilter->Update();
    std::cerr << "Exception should have been thrown since Update() is invoked without setting an input " << std::endl;
    return EXIT_FAILURE;
  }
  catch (const itk::ExceptionObject & excp)
  {
    std::cerr << "Exception caught: " << excp << std::endl;
  }

  covarianceFilter->ResetPipeline();

  if (covarianceFilter->GetInput() != nullptr)
  {
    std::cerr << "GetInput() should return nullptr if the input has not been set" << std::endl;
    return EXIT_FAILURE;
  }

  covarianceFilter->SetInput(sampleGeneratingFilter->GetOutput());
  try
  {
    covarianceFilter->Update();
  }
  catch (const itk::ExceptionObject & excp)
  {
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
  }

  covarianceFilter->Print(std::cout);

  const double epsilon = 1e-6;

  // CHECK THE RESULTS
  const CovarianceSampleFilterType::MeasurementVectorDecoratedType * meanDecorator = covarianceFilter->GetMeanOutput();

  CovarianceSampleFilterType::MeasurementVectorRealType mean = meanDecorator->Get();
  std::cout << "Mean:   " << mean << std::endl;
  CovarianceSampleFilterType::MeasurementVectorRealType mean2 = covarianceFilter->GetMean();

  if ((itk::Math::abs(mean[0] - mean2[0]) > epsilon) || (itk::Math::abs(mean[1] - mean2[1]) > epsilon) ||
      (itk::Math::abs(mean[2] - mean2[2]) > epsilon))
  {
    std::cerr << "Mean parameter value retrieved using GetMean() and the decorator are not the same:: " << mean << ','
              << mean2 << std::endl;
    return EXIT_FAILURE;
  }


  const CovarianceSampleFilterType::MatrixDecoratedType * decorator = covarianceFilter->GetCovarianceMatrixOutput();
  CovarianceSampleFilterType::MatrixType                  covarianceMatrix = decorator->Get();

  std::cout << "Covariance matrix:   " << covarianceMatrix << std::endl;


  using MeanSampleFilterType = itk::Statistics::MeanSampleFilter<ListSampleType>;
  auto meanFilter = MeanSampleFilterType::New();
  meanFilter->SetInput(sampleGeneratingFilter->GetOutput());

  try
  {
    meanFilter->Update();
  }
  catch (const itk::ExceptionObject & excp)
  {
    std::cerr << "Exception caught: " << excp << std::endl;
  }

  MeanSampleFilterType::MeasurementVectorRealType meanCalculatedUsingMeanSampleFilter = meanFilter->GetMean();

  if ((itk::Math::abs(meanCalculatedUsingMeanSampleFilter[0] - mean[0]) > epsilon) ||
      (itk::Math::abs(meanCalculatedUsingMeanSampleFilter[1] - mean[1]) > epsilon) ||
      (itk::Math::abs(meanCalculatedUsingMeanSampleFilter[2] - mean[2]) > epsilon))
  {
    std::cerr
      << "Mean calculated using the MeanSampleFilter is different from the one calculated using the covariance filter "
      << std::endl;
    std::cerr << "Mean computed with covariance filter = " << mean << std::endl;
    std::cerr << "Mean computed with mean filter = " << meanCalculatedUsingMeanSampleFilter << std::endl;
    return EXIT_FAILURE;
  }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}