File: itkExpectationMaximizationMixtureModelEstimatorTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (202 lines) | stat: -rw-r--r-- 6,490 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/


#include <fstream>

#include "itkPointSetToListSampleAdaptor.h"

#include "itkGaussianMixtureModelComponent.h"
#include "itkExpectationMaximizationMixtureModelEstimator.h"

int
itkExpectationMaximizationMixtureModelEstimatorTest(int argc, char * argv[])
{
  namespace stat = itk::Statistics;
  using PointSetType = itk::PointSet<double, 2>;
  using DataSampleType = stat::PointSetToListSampleAdaptor<PointSetType>;

  using EstimatorType = stat::ExpectationMaximizationMixtureModelEstimator<DataSampleType>;

  using ComponentType = stat::GaussianMixtureModelComponent<DataSampleType>;

  if (argc < 2)
  {
    std::cout << "ERROR: data file name argument missing." << std::endl;
    return EXIT_FAILURE;
  }


  unsigned int i, j;
  char *       dataFileName = argv[1];
  int          dataSize = 2000;
  int          maximumIteration = 200;
  using ParametersType = itk::Array<double>;
  double                      minStandardDeviation = 28.54746;
  unsigned int                numberOfClasses = 2;
  std::vector<ParametersType> trueParameters(numberOfClasses);
  ParametersType              params(6);
  params[0] = 99.261;
  params[1] = 100.078;
  params[2] = 814.95741;
  params[3] = 38.40308;
  params[4] = 38.40308;
  params[5] = 817.64446;
  trueParameters[0] = params;

  params[0] = 200.1;
  params[1] = 201.3;
  params[2] = 859.785295;
  params[3] = -3.617316;
  params[4] = -3.617316;
  params[5] = 848.991508;
  trueParameters[1] = params;

  // only the means are altered
  std::vector<ParametersType> initialParameters(numberOfClasses);
  params[0] = 80.0;
  params[1] = 80.0;
  params[2] = 814.95741;
  params[3] = 38.40308;
  params[4] = 38.40308;
  params[5] = 817.64446;
  initialParameters[0] = params;

  params[0] = 180.0;
  params[1] = 180.0;
  params[2] = 859.785295;
  params[3] = -3.617316;
  params[4] = -3.617316;
  params[5] = 848.991508;
  initialParameters[1] = params;

  itk::Array<double> trueProportions(numberOfClasses);
  trueProportions[0] = 0.5;
  trueProportions[1] = 0.5;

  itk::Array<double> initialProportions(numberOfClasses);
  initialProportions[0] = 0.5;
  initialProportions[1] = 0.5;

  /* Loading point data */
  auto                                 pointSet = PointSetType::New();
  PointSetType::PointsContainerPointer pointsContainer = PointSetType::PointsContainer::New();
  pointsContainer->Reserve(dataSize);
  pointSet->SetPoints(pointsContainer);

  PointSetType::PointsContainerIterator p_iter = pointsContainer->Begin();
  PointSetType::PointType               point;
  double                                temp;
  std::ifstream                         dataStream(dataFileName);
  if (!dataStream)
  {
    std::cout << "ERROR: fail to open the data file." << std::endl;
    return EXIT_FAILURE;
  }

  while (p_iter != pointsContainer->End())
  {
    for (i = 0; i < PointSetType::PointDimension; ++i)
    {
      dataStream >> temp;
      point[i] = temp;
    }
    p_iter.Value() = point;
    ++p_iter;
  }

  dataStream.close();

  /* Importing the point set to the sample */
  auto sample = DataSampleType::New();

  sample->SetPointSet(pointSet);

  /* Preparing the gaussian mixture components */
  using ComponentPointer = ComponentType::Pointer;
  std::vector<ComponentPointer> components;
  for (i = 0; i < numberOfClasses; ++i)
  {
    components.push_back(ComponentType::New());
    (components[i])->SetSample(sample);
    (components[i])->SetParameters(initialParameters[i]);
  }

  /* Estimating */
  auto estimator = EstimatorType::New();
  estimator->SetSample(sample);
  estimator->SetMaximumIteration(maximumIteration);
  estimator->SetInitialProportions(initialProportions);

  for (i = 0; i < numberOfClasses; ++i)
  {
    estimator->AddComponent((ComponentType::Superclass *)(components[i]).GetPointer());
  }

  estimator->Update();

  std::cout << "DEBUG: current iteration = " << estimator->GetCurrentIteration() << std::endl;

  bool               passed = true;
  double             displacement;
  const unsigned int measurementVectorSize = sample->GetMeasurementVectorSize();
  for (i = 0; i < numberOfClasses; ++i)
  {
    std::cout << "Cluster[" << i << ']' << std::endl;
    std::cout << "    Parameters:" << std::endl;
    std::cout << "         " << (components[i])->GetFullParameters() << std::endl;
    std::cout << "    Proportion: ";
    std::cout << "         " << (estimator->GetProportions())[i] << std::endl;
    displacement = 0.0;
    for (j = 0; j < measurementVectorSize; ++j)
    {
      temp = (components[i])->GetFullParameters()[j] - trueParameters[i][j];
      displacement += (temp * temp);
    }
    displacement = std::sqrt(displacement);
    std::cout << "    Mean displacement: " << std::endl;
    std::cout << "        " << displacement << std::endl << std::endl;
    if (displacement > (minStandardDeviation / 100.0) * 3)
    {
      passed = false;
    }
  }

  if (!passed)
  {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
  }

  estimator->Print(std::cout);

  // Test streaming enumeration for ExpectationMaximizationMixtureModelEstimatorEnums::TERMINATION_CODE elements
  const std::set<itk::Statistics::ExpectationMaximizationMixtureModelEstimatorEnums::TERMINATION_CODE>
    allTERMINATION_CODE{
      itk::Statistics::ExpectationMaximizationMixtureModelEstimatorEnums::TERMINATION_CODE::CONVERGED,
      itk::Statistics::ExpectationMaximizationMixtureModelEstimatorEnums::TERMINATION_CODE::NOT_CONVERGED
    };
  for (const auto & ee : allTERMINATION_CODE)
  {
    std::cout << "STREAMED ENUM VALUE ExpectationMaximizationMixtureModelEstimatorEnums::TERMINATION_CODE: " << ee
              << std::endl;
  }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}