File: itkGaussianRandomSpatialNeighborSubsamplerTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (138 lines) | stat: -rw-r--r-- 4,388 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkWin32Header.h"

#include <fstream>

#include "itkImageToNeighborhoodSampleAdaptor.h"
#include "itkSubsample.h"
#include "itkImageFileWriter.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"

#include "itkGaussianRandomSpatialNeighborSubsampler.h"
#include "itkMath.h"

int
itkGaussianRandomSpatialNeighborSubsamplerTest(int argc, char * argv[])
{
  std::cout << "GaussianRandomSpatialNeighborSubsampler Test \n \n";

  std::string outFile = "";
  if (argc > 1)
  {
    outFile = argv[1];
  }

  using FloatImage = itk::Image<float, 2>;
  using RegionType = FloatImage::RegionType;
  using IndexType = FloatImage::IndexType;
  using SizeType = FloatImage::SizeType;
  using BoundaryCondition = itk::ZeroFluxNeumannBoundaryCondition<FloatImage>;
  using AdaptorType = itk::Statistics::ImageToNeighborhoodSampleAdaptor<FloatImage, BoundaryCondition>;
  using SamplerType = itk::Statistics::GaussianRandomSpatialNeighborSubsampler<AdaptorType, RegionType>;
  using WriterType = itk::ImageFileWriter<FloatImage>;

  auto     inImage = FloatImage::New();
  SizeType sz;
  sz.Fill(35);
  IndexType idx;
  idx.Fill(0);
  RegionType region{ idx, sz };

  inImage->SetRegions(region);
  inImage->AllocateInitialized();

  auto sample = AdaptorType::New();
  sample->SetImage(inImage);

  auto sampler_orig = SamplerType::New();
  sampler_orig->SetSample(sample);
  sampler_orig->SetSampleRegion(region);
  sampler_orig->SetRadius(20);
  sampler_orig->SetNumberOfResultsRequested(50);
  sampler_orig->SetVariance(25);
  sampler_orig->SetSeed(100);
  sampler_orig->CanSelectQueryOff();

  // test clone mechanism
  SamplerType::Pointer sampler = sampler_orig->Clone().GetPointer();
  if (sampler->GetSample() != sampler_orig->GetSample())
  {
    std::cerr << "Clone did not copy the sample correctly!" << std::endl;
    return EXIT_FAILURE;
  }
  if (sampler->GetSampleRegion() != sampler_orig->GetSampleRegion())
  {
    std::cerr << "Clone did not copy the region correctly!" << std::endl;
    return EXIT_FAILURE;
  }
  if (sampler->GetRadius() != sampler_orig->GetRadius())
  {
    std::cerr << "Clone did not copy the radius correctly!" << std::endl;
    return EXIT_FAILURE;
  }
  if (sampler->GetNumberOfResultsRequested() != sampler_orig->GetNumberOfResultsRequested())
  {
    std::cerr << "Clone did not copy the number of results requested correctly!" << std::endl;
    return EXIT_FAILURE;
  }
  if (itk::Math::NotExactlyEquals(sampler->GetVariance(), sampler_orig->GetVariance()))
  {
    std::cerr << "Clone did not copy the variance correctly!" << std::endl;
    return EXIT_FAILURE;
  }
  if (sampler->GetSeed() != sampler_orig->GetSeed())
  {
    std::cerr << "Clone did not copy the seed correctly!" << std::endl;
    return EXIT_FAILURE;
  }
  if (sampler->GetCanSelectQuery() != sampler_orig->GetCanSelectQuery())
  {
    std::cerr << "Clone did not copy CanSelectQuery correctly!" << std::endl;
    return EXIT_FAILURE;
  }

  SamplerType::SubsamplePointer subsample = SamplerType::SubsampleType::New();
  sampler->Search(612, subsample);

  for (SamplerType::SubsampleConstIterator sIt = subsample->Begin(); sIt != subsample->End(); ++sIt)
  {
    IndexType index;
    index = sIt.GetMeasurementVector()[0].GetIndex();
    inImage->SetPixel(index, 255);
  }

  if (!outFile.empty())
  {
    auto writer = WriterType::New();
    writer->SetFileName(outFile);
    writer->SetInput(inImage);
    try
    {
      writer->Update();
    }
    catch (const itk::ExceptionObject & excp)
    {
      std::cerr << excp << std::endl;
    }
  }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}