1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Ensure we do not get NaN's with a constant image
#include "itkScalarImageToCooccurrenceMatrixFilter.h"
#include "itkHistogramToTextureFeaturesFilter.h"
#include "itkMath.h"
int
itkHistogramToTextureFeaturesFilterNaNTest(int, char *[])
{
constexpr unsigned int Dimension = 2;
using PixelType = unsigned char;
using ImageType = itk::Image<PixelType, Dimension>;
// Build a constant image
auto image = ImageType::New();
ImageType::RegionType region;
ImageType::SizeType size;
size.Fill(256);
region.SetSize(size);
image->SetRegions(region);
image->Allocate();
image->FillBuffer(128);
// Generate co-occurence matrix
using MatrixGeneratorType = itk::Statistics::ScalarImageToCooccurrenceMatrixFilter<ImageType>;
auto generator = MatrixGeneratorType::New();
MatrixGeneratorType::OffsetType offset;
offset.Fill(1);
generator->SetOffset(offset);
generator->SetInput(image);
generator->Update();
using TextureFilterType = itk::Statistics::HistogramToTextureFeaturesFilter<MatrixGeneratorType::HistogramType>;
auto filter = TextureFilterType::New();
filter->SetInput(generator->GetOutput());
filter->Update();
TextureFilterType::MeasurementType correlation = filter->GetCorrelation();
std::cout << "Correlation: " << correlation << std::endl;
if (itk::Math::isnan(correlation))
{
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|