File: itkKdTreeBasedKmeansEstimatorTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (183 lines) | stat: -rw-r--r-- 5,933 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/


#include <fstream>

#include "itkPointSetToListSampleAdaptor.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkTestingMacros.h"

int
itkKdTreeBasedKmeansEstimatorTest(int argc, char * argv[])
{
  namespace stat = itk::Statistics;

  if (argc < 5)
  {
    std::cerr << "Missing Arguments" << std::endl;
    std::cerr << "Usage: " << std::endl;
    std::cerr << itkNameOfTestExecutableMacro(argv)
              << "inputFileName  bucketSize minStandardDeviation tolerancePercent useClusterLabels" << std::endl;
    return EXIT_FAILURE;
  }


  char * dataFileName = argv[1];
  int    dataSize = 2000;
  int    bucketSize = std::stoi(argv[2]);
  double minStandardDeviation = std::stod(argv[3]);

  itk::Array<double> trueMeans(4);
  trueMeans[0] = 99.261;
  trueMeans[1] = 100.078;
  trueMeans[2] = 200.1;
  trueMeans[3] = 201.3;

  itk::Array<double> initialMeans(4);
  initialMeans[0] = 80.0;
  initialMeans[1] = 80.0;
  initialMeans[2] = 180.0;
  initialMeans[3] = 180.0;
  int maximumIteration = 200;

  /* Loading point data */
  using PointSetType = itk::PointSet<double, 2>;
  auto                                 pointSet = PointSetType::New();
  PointSetType::PointsContainerPointer pointsContainer = PointSetType::PointsContainer::New();
  pointsContainer->Reserve(dataSize);
  pointSet->SetPoints(pointsContainer);

  PointSetType::PointsContainerIterator pIter = pointsContainer->Begin();
  PointSetType::PointType               point;
  double                                temp;
  std::ifstream                         dataStream(dataFileName);
  while (pIter != pointsContainer->End())
  {
    for (unsigned int i = 0; i < PointSetType::PointDimension; ++i)
    {
      dataStream >> temp;
      point[i] = temp;
    }
    pIter.Value() = point;
    ++pIter;
  }

  dataStream.close();

  /* Importing the point set to the sample */
  using DataSampleType = stat::PointSetToListSampleAdaptor<PointSetType>;

  auto sample = DataSampleType::New();

  sample->SetPointSet(pointSet);

  /* Creating k-d tree */
  using Generator = stat::WeightedCentroidKdTreeGenerator<DataSampleType>;
  auto generator = Generator::New();

  generator->SetSample(sample);
  generator->SetBucketSize(bucketSize);
  generator->GenerateData();

  /* Searching kmeans */
  using Estimator = stat::KdTreeBasedKmeansEstimator<Generator::KdTreeType>;
  auto estimator = Estimator::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(estimator, KdTreeBasedKmeansEstimator, Object);


  // Set the initial means
  estimator->SetParameters(initialMeans);

  // Set the maximum iteration
  estimator->SetMaximumIteration(maximumIteration);
  ITK_TEST_SET_GET_VALUE(maximumIteration, estimator->GetMaximumIteration());

  estimator->SetKdTree(generator->GetOutput());

  // Set the centroid position change threshold
  estimator->SetCentroidPositionChangesThreshold(0.0);
  constexpr double tolerance = 0.1;
  if (itk::Math::abs(estimator->GetCentroidPositionChangesThreshold() - 0.0) > tolerance)
  {
    std::cerr << "Set/GetCentroidPositionChangesThreshold() " << std::endl;
    return EXIT_FAILURE;
  }

  auto useClusterLabels = static_cast<bool>(std::stoi(argv[5]));
  ITK_TEST_SET_GET_BOOLEAN(estimator, UseClusterLabels, useClusterLabels);

  estimator->StartOptimization();
  Estimator::ParametersType estimatedMeans = estimator->GetParameters();

  bool               passed = true;
  int                index;
  const unsigned int numberOfMeasurements = sample->GetMeasurementVectorSize();
  const unsigned int numberOfClasses = trueMeans.size() / numberOfMeasurements;
  for (unsigned int i = 0; i < numberOfClasses; ++i)
  {
    std::cout << "cluster[" << i << "] " << std::endl;
    double displacement = 0.0;
    std::cout << "    true mean :" << std::endl;
    std::cout << "        ";
    index = numberOfMeasurements * i;
    for (unsigned int j = 0; j < numberOfMeasurements; ++j)
    {
      std::cout << trueMeans[index] << ' ';
      ++index;
    }
    std::cout << std::endl;
    std::cout << "    estimated mean :" << std::endl;
    std::cout << "        ";

    index = numberOfMeasurements * i;
    for (unsigned int j = 0; j < numberOfMeasurements; ++j)
    {
      std::cout << estimatedMeans[index] << ' ';
      temp = estimatedMeans[index] - trueMeans[index];
      ++index;
      displacement += (temp * temp);
    }
    std::cout << std::endl;
    displacement = std::sqrt(displacement);
    std::cout << "    Mean displacement: " << std::endl;
    std::cout << "        " << displacement << std::endl << std::endl;

    double tolearancePercent = std::stod(argv[4]);

    // if the displacement of the estimates are within tolearancePercent% of
    // standardDeviation then we assume it is successful
    if (displacement > (minStandardDeviation * tolearancePercent))
    {
      std::cerr << "displacement is larger than tolerance ";
      std::cerr << minStandardDeviation * tolearancePercent << std::endl;
      passed = false;
    }
  }

  if (!passed)
  {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
  }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}