1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <fstream>
#include "itkPointSetToListSampleAdaptor.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkTestingMacros.h"
int
itkKdTreeBasedKmeansEstimatorTest(int argc, char * argv[])
{
namespace stat = itk::Statistics;
if (argc < 5)
{
std::cerr << "Missing Arguments" << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << itkNameOfTestExecutableMacro(argv)
<< "inputFileName bucketSize minStandardDeviation tolerancePercent useClusterLabels" << std::endl;
return EXIT_FAILURE;
}
char * dataFileName = argv[1];
int dataSize = 2000;
int bucketSize = std::stoi(argv[2]);
double minStandardDeviation = std::stod(argv[3]);
itk::Array<double> trueMeans(4);
trueMeans[0] = 99.261;
trueMeans[1] = 100.078;
trueMeans[2] = 200.1;
trueMeans[3] = 201.3;
itk::Array<double> initialMeans(4);
initialMeans[0] = 80.0;
initialMeans[1] = 80.0;
initialMeans[2] = 180.0;
initialMeans[3] = 180.0;
int maximumIteration = 200;
/* Loading point data */
using PointSetType = itk::PointSet<double, 2>;
auto pointSet = PointSetType::New();
PointSetType::PointsContainerPointer pointsContainer = PointSetType::PointsContainer::New();
pointsContainer->Reserve(dataSize);
pointSet->SetPoints(pointsContainer);
PointSetType::PointsContainerIterator pIter = pointsContainer->Begin();
PointSetType::PointType point;
double temp;
std::ifstream dataStream(dataFileName);
while (pIter != pointsContainer->End())
{
for (unsigned int i = 0; i < PointSetType::PointDimension; ++i)
{
dataStream >> temp;
point[i] = temp;
}
pIter.Value() = point;
++pIter;
}
dataStream.close();
/* Importing the point set to the sample */
using DataSampleType = stat::PointSetToListSampleAdaptor<PointSetType>;
auto sample = DataSampleType::New();
sample->SetPointSet(pointSet);
/* Creating k-d tree */
using Generator = stat::WeightedCentroidKdTreeGenerator<DataSampleType>;
auto generator = Generator::New();
generator->SetSample(sample);
generator->SetBucketSize(bucketSize);
generator->GenerateData();
/* Searching kmeans */
using Estimator = stat::KdTreeBasedKmeansEstimator<Generator::KdTreeType>;
auto estimator = Estimator::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(estimator, KdTreeBasedKmeansEstimator, Object);
// Set the initial means
estimator->SetParameters(initialMeans);
// Set the maximum iteration
estimator->SetMaximumIteration(maximumIteration);
ITK_TEST_SET_GET_VALUE(maximumIteration, estimator->GetMaximumIteration());
estimator->SetKdTree(generator->GetOutput());
// Set the centroid position change threshold
estimator->SetCentroidPositionChangesThreshold(0.0);
constexpr double tolerance = 0.1;
if (itk::Math::abs(estimator->GetCentroidPositionChangesThreshold() - 0.0) > tolerance)
{
std::cerr << "Set/GetCentroidPositionChangesThreshold() " << std::endl;
return EXIT_FAILURE;
}
auto useClusterLabels = static_cast<bool>(std::stoi(argv[5]));
ITK_TEST_SET_GET_BOOLEAN(estimator, UseClusterLabels, useClusterLabels);
estimator->StartOptimization();
Estimator::ParametersType estimatedMeans = estimator->GetParameters();
bool passed = true;
int index;
const unsigned int numberOfMeasurements = sample->GetMeasurementVectorSize();
const unsigned int numberOfClasses = trueMeans.size() / numberOfMeasurements;
for (unsigned int i = 0; i < numberOfClasses; ++i)
{
std::cout << "cluster[" << i << "] " << std::endl;
double displacement = 0.0;
std::cout << " true mean :" << std::endl;
std::cout << " ";
index = numberOfMeasurements * i;
for (unsigned int j = 0; j < numberOfMeasurements; ++j)
{
std::cout << trueMeans[index] << ' ';
++index;
}
std::cout << std::endl;
std::cout << " estimated mean :" << std::endl;
std::cout << " ";
index = numberOfMeasurements * i;
for (unsigned int j = 0; j < numberOfMeasurements; ++j)
{
std::cout << estimatedMeans[index] << ' ';
temp = estimatedMeans[index] - trueMeans[index];
++index;
displacement += (temp * temp);
}
std::cout << std::endl;
displacement = std::sqrt(displacement);
std::cout << " Mean displacement: " << std::endl;
std::cout << " " << displacement << std::endl << std::endl;
double tolearancePercent = std::stod(argv[4]);
// if the displacement of the estimates are within tolearancePercent% of
// standardDeviation then we assume it is successful
if (displacement > (minStandardDeviation * tolearancePercent))
{
std::cerr << "displacement is larger than tolerance ";
std::cerr << minStandardDeviation * tolearancePercent << std::endl;
passed = false;
}
}
if (!passed)
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|