File: itkKdTreeTest3.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (231 lines) | stat: -rw-r--r-- 7,128 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "itkListSample.h"
#include "itkKdTreeGenerator.h"
#include "itkTestingMacros.h"
#include <fstream>
#include <algorithm>

int
itkKdTreeTest3(int argc, char * argv[])
{
  if (argc < 5)
  {
    std::cerr << "Missing parameters." << std::endl;
    std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);
    std::cerr << " numberOfDataPoints numberOfTestPoints "
              << "numberOfNeighbors bucketSize [graphvizDotOutputFile]" << std::endl;
    return EXIT_FAILURE;
  }

  // Random number generator
  using NumberGeneratorType = itk::Statistics::MersenneTwisterRandomVariateGenerator;

  NumberGeneratorType::Pointer randomNumberGenerator = NumberGeneratorType::GetInstance();
  randomNumberGenerator->Initialize();

  using MeasurementVectorType = itk::Array<double>;
  using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

  constexpr SampleType::MeasurementVectorSizeType measurementVectorSize = 2;

  auto sample = SampleType::New();
  sample->SetMeasurementVectorSize(measurementVectorSize);

  //
  // Generate a sample of random points
  //
  const unsigned int    numberOfDataPoints = std::stoi(argv[1]);
  MeasurementVectorType mv(measurementVectorSize);
  for (unsigned int i = 0; i < numberOfDataPoints; ++i)
  {
    mv[0] = randomNumberGenerator->GetNormalVariate(0.0, 1.0);
    mv[1] = randomNumberGenerator->GetNormalVariate(0.0, 1.0);
    sample->PushBack(mv);
  }

  using TreeGeneratorType = itk::Statistics::KdTreeGenerator<SampleType>;
  auto treeGenerator = TreeGeneratorType::New();

  const unsigned int bucketSize = std::stoi(argv[4]);

  treeGenerator->SetSample(sample);
  treeGenerator->SetBucketSize(bucketSize);
  treeGenerator->Update();

  using TreeType = TreeGeneratorType::KdTreeType;

  TreeType::Pointer tree = treeGenerator->GetOutput();

  MeasurementVectorType queryPoint(measurementVectorSize);

  unsigned int numberOfNeighbors = std::stoi(argv[3]);
  if (numberOfNeighbors > numberOfDataPoints)
  {
    numberOfNeighbors = numberOfDataPoints;
  }
  TreeType::InstanceIdentifierVectorType neighbors1;
  TreeType::InstanceIdentifierVectorType neighbors2;

  MeasurementVectorType result(measurementVectorSize);
  MeasurementVectorType test_point(measurementVectorSize);
  MeasurementVectorType min_point(measurementVectorSize);

  unsigned int numberOfFailedPoints1 = 0;

  const unsigned int numberOfTestPoints = std::stoi(argv[2]);

  //
  //  Check that for every point in the sample, its closest point is itself.
  //
  using DistanceMetricType = itk::Statistics::EuclideanDistanceMetric<MeasurementVectorType>;

  using OriginType = DistanceMetricType::OriginType;

  auto distanceMetric = DistanceMetricType::New();

  OriginType origin(measurementVectorSize);

  for (unsigned int k = 0; k < sample->Size(); ++k)
  {
    queryPoint = sample->GetMeasurementVector(k);

    for (unsigned int i = 0; i < sample->GetMeasurementVectorSize(); ++i)
    {
      origin[i] = queryPoint[i];
    }

    distanceMetric->SetOrigin(origin);

    tree->Search(queryPoint, numberOfNeighbors, neighbors1);
    double max_distance = 0.;

    for (const auto i : neighbors1)
    {
      const double distance = distanceMetric->Evaluate(tree->GetMeasurementVector(i));

      max_distance = std::max(distance, max_distance);
    }

    max_distance += itk::NumericTraits<double>::epsilon() * 10.0;
    tree->Search(queryPoint, max_distance, neighbors2);

    for (size_t i = 0; i < neighbors2.size(); ++i)
    {
      auto temp_it = std::find(neighbors1.begin(), neighbors1.end(), neighbors2[i]);
      if (temp_it == neighbors1.end())
      {
        std::cerr << "neighbors2[" << i << "] = " << neighbors2[i] << " is not in neighbors1" << std::endl;
        numberOfFailedPoints1++;
      }
    }

    for (size_t i = 0; i < neighbors1.size(); ++i)
    {
      auto temp_it = std::find(neighbors2.begin(), neighbors2.end(), neighbors1[i]);
      if (temp_it == neighbors2.end())
      {
        std::cerr << "neighbors1[" << i << "] = " << neighbors1[i] << " is not in neighbors2" << std::endl;
        numberOfFailedPoints1++;
      }
    }
  }

  //
  // Generate a second sample of random points
  // and use them to query the tree
  //
  unsigned int numberOfFailedPoints2 = 0;

  for (unsigned int j = 0; j < numberOfTestPoints; ++j)
  {
    double max_distance = 0.;

    queryPoint[0] = randomNumberGenerator->GetNormalVariate(0.0, 1.0);
    queryPoint[1] = randomNumberGenerator->GetNormalVariate(0.0, 1.0);

    for (unsigned int i = 0; i < sample->GetMeasurementVectorSize(); ++i)
    {
      origin[i] = queryPoint[i];
    }

    distanceMetric->SetOrigin(origin);

    tree->Search(queryPoint, numberOfNeighbors, neighbors1);

    for (const auto i : neighbors1)
    {
      const double distance = distanceMetric->Evaluate(tree->GetMeasurementVector(i));

      max_distance = std::max(distance, max_distance);
    }

    max_distance += itk::NumericTraits<double>::epsilon() * 10.0;
    tree->Search(queryPoint, max_distance, neighbors2);

    for (size_t i = 0; i < neighbors2.size(); ++i)
    {
      const double distance = distanceMetric->Evaluate(tree->GetMeasurementVector(neighbors2[i]));
      if (distance <= max_distance)
      {
        auto temp_it = std::find(neighbors1.begin(), neighbors1.end(), neighbors2[i]);
        if (temp_it == neighbors1.end())
        {
          std::cerr << "neighbors2[" << i << "] = " << neighbors2[i] << " is not in neighbors1" << std::endl;
          numberOfFailedPoints2++;
        }
      }
    }
  }

  if (argc > 5)
  {
    //
    // Plot out the tree structure to the console in the format used by Graphviz dot
    //
    std::ofstream plotFile;
    plotFile.open(argv[5]);
    tree->PlotTree(plotFile);
    plotFile.close();
  }


  if (numberOfFailedPoints1)
  {
    std::cerr << numberOfFailedPoints1 << " out of " << sample->Size();
    std::cerr << " points failed to find themselves as closest-point" << std::endl;
  }

  if (numberOfFailedPoints2)
  {
    std::cerr << numberOfFailedPoints2 << " out of " << numberOfTestPoints;
    std::cerr << " points failed to find the correct closest point." << std::endl;
  }


  if (numberOfFailedPoints1 || numberOfFailedPoints2)
  {
    return EXIT_FAILURE;
  }


  std::cout << "Test PASSED." << std::endl;
  return EXIT_SUCCESS;
}