1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "itkListSample.h"
#include "itkKdTreeGenerator.h"
#include "itkTestingMacros.h"
#include <fstream>
#include <algorithm>
int
itkKdTreeTest3(int argc, char * argv[])
{
if (argc < 5)
{
std::cerr << "Missing parameters." << std::endl;
std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);
std::cerr << " numberOfDataPoints numberOfTestPoints "
<< "numberOfNeighbors bucketSize [graphvizDotOutputFile]" << std::endl;
return EXIT_FAILURE;
}
// Random number generator
using NumberGeneratorType = itk::Statistics::MersenneTwisterRandomVariateGenerator;
NumberGeneratorType::Pointer randomNumberGenerator = NumberGeneratorType::GetInstance();
randomNumberGenerator->Initialize();
using MeasurementVectorType = itk::Array<double>;
using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;
constexpr SampleType::MeasurementVectorSizeType measurementVectorSize = 2;
auto sample = SampleType::New();
sample->SetMeasurementVectorSize(measurementVectorSize);
//
// Generate a sample of random points
//
const unsigned int numberOfDataPoints = std::stoi(argv[1]);
MeasurementVectorType mv(measurementVectorSize);
for (unsigned int i = 0; i < numberOfDataPoints; ++i)
{
mv[0] = randomNumberGenerator->GetNormalVariate(0.0, 1.0);
mv[1] = randomNumberGenerator->GetNormalVariate(0.0, 1.0);
sample->PushBack(mv);
}
using TreeGeneratorType = itk::Statistics::KdTreeGenerator<SampleType>;
auto treeGenerator = TreeGeneratorType::New();
const unsigned int bucketSize = std::stoi(argv[4]);
treeGenerator->SetSample(sample);
treeGenerator->SetBucketSize(bucketSize);
treeGenerator->Update();
using TreeType = TreeGeneratorType::KdTreeType;
TreeType::Pointer tree = treeGenerator->GetOutput();
MeasurementVectorType queryPoint(measurementVectorSize);
unsigned int numberOfNeighbors = std::stoi(argv[3]);
if (numberOfNeighbors > numberOfDataPoints)
{
numberOfNeighbors = numberOfDataPoints;
}
TreeType::InstanceIdentifierVectorType neighbors1;
TreeType::InstanceIdentifierVectorType neighbors2;
MeasurementVectorType result(measurementVectorSize);
MeasurementVectorType test_point(measurementVectorSize);
MeasurementVectorType min_point(measurementVectorSize);
unsigned int numberOfFailedPoints1 = 0;
const unsigned int numberOfTestPoints = std::stoi(argv[2]);
//
// Check that for every point in the sample, its closest point is itself.
//
using DistanceMetricType = itk::Statistics::EuclideanDistanceMetric<MeasurementVectorType>;
using OriginType = DistanceMetricType::OriginType;
auto distanceMetric = DistanceMetricType::New();
OriginType origin(measurementVectorSize);
for (unsigned int k = 0; k < sample->Size(); ++k)
{
queryPoint = sample->GetMeasurementVector(k);
for (unsigned int i = 0; i < sample->GetMeasurementVectorSize(); ++i)
{
origin[i] = queryPoint[i];
}
distanceMetric->SetOrigin(origin);
tree->Search(queryPoint, numberOfNeighbors, neighbors1);
double max_distance = 0.;
for (const auto i : neighbors1)
{
const double distance = distanceMetric->Evaluate(tree->GetMeasurementVector(i));
max_distance = std::max(distance, max_distance);
}
max_distance += itk::NumericTraits<double>::epsilon() * 10.0;
tree->Search(queryPoint, max_distance, neighbors2);
for (size_t i = 0; i < neighbors2.size(); ++i)
{
auto temp_it = std::find(neighbors1.begin(), neighbors1.end(), neighbors2[i]);
if (temp_it == neighbors1.end())
{
std::cerr << "neighbors2[" << i << "] = " << neighbors2[i] << " is not in neighbors1" << std::endl;
numberOfFailedPoints1++;
}
}
for (size_t i = 0; i < neighbors1.size(); ++i)
{
auto temp_it = std::find(neighbors2.begin(), neighbors2.end(), neighbors1[i]);
if (temp_it == neighbors2.end())
{
std::cerr << "neighbors1[" << i << "] = " << neighbors1[i] << " is not in neighbors2" << std::endl;
numberOfFailedPoints1++;
}
}
}
//
// Generate a second sample of random points
// and use them to query the tree
//
unsigned int numberOfFailedPoints2 = 0;
for (unsigned int j = 0; j < numberOfTestPoints; ++j)
{
double max_distance = 0.;
queryPoint[0] = randomNumberGenerator->GetNormalVariate(0.0, 1.0);
queryPoint[1] = randomNumberGenerator->GetNormalVariate(0.0, 1.0);
for (unsigned int i = 0; i < sample->GetMeasurementVectorSize(); ++i)
{
origin[i] = queryPoint[i];
}
distanceMetric->SetOrigin(origin);
tree->Search(queryPoint, numberOfNeighbors, neighbors1);
for (const auto i : neighbors1)
{
const double distance = distanceMetric->Evaluate(tree->GetMeasurementVector(i));
max_distance = std::max(distance, max_distance);
}
max_distance += itk::NumericTraits<double>::epsilon() * 10.0;
tree->Search(queryPoint, max_distance, neighbors2);
for (size_t i = 0; i < neighbors2.size(); ++i)
{
const double distance = distanceMetric->Evaluate(tree->GetMeasurementVector(neighbors2[i]));
if (distance <= max_distance)
{
auto temp_it = std::find(neighbors1.begin(), neighbors1.end(), neighbors2[i]);
if (temp_it == neighbors1.end())
{
std::cerr << "neighbors2[" << i << "] = " << neighbors2[i] << " is not in neighbors1" << std::endl;
numberOfFailedPoints2++;
}
}
}
}
if (argc > 5)
{
//
// Plot out the tree structure to the console in the format used by Graphviz dot
//
std::ofstream plotFile;
plotFile.open(argv[5]);
tree->PlotTree(plotFile);
plotFile.close();
}
if (numberOfFailedPoints1)
{
std::cerr << numberOfFailedPoints1 << " out of " << sample->Size();
std::cerr << " points failed to find themselves as closest-point" << std::endl;
}
if (numberOfFailedPoints2)
{
std::cerr << numberOfFailedPoints2 << " out of " << numberOfTestPoints;
std::cerr << " points failed to find the correct closest point." << std::endl;
}
if (numberOfFailedPoints1 || numberOfFailedPoints2)
{
return EXIT_FAILURE;
}
std::cout << "Test PASSED." << std::endl;
return EXIT_SUCCESS;
}
|