1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageToListSampleFilter.h"
#include "itkStandardDeviationPerComponentSampleFilter.h"
#include "itkImageRegionIterator.h"
#include "itkCovarianceSampleFilter.h"
int
itkStandardDeviationPerComponentSampleFilterTest(int, char *[])
{
std::cout << "StandardDeviationPerComponentSampleFilter Test \n \n";
// Now generate an image
enum
{
MeasurementVectorSize = 3
};
using MeasurementType = float;
using MeasurementVectorType = itk::FixedArray<MeasurementType, MeasurementVectorSize>;
using ImageType = itk::Image<MeasurementVectorType, MeasurementVectorSize>;
using MaskImageType = itk::Image<unsigned char, MeasurementVectorSize>;
auto image = ImageType::New();
ImageType::RegionType region;
ImageType::SizeType size;
ImageType::IndexType index;
index.Fill(0);
size.Fill(5);
region.SetIndex(index);
region.SetSize(size);
image->SetBufferedRegion(region);
image->Allocate();
using ImageIterator = itk::ImageRegionIterator<ImageType>;
ImageIterator iter(image, region);
unsigned int count = 0;
MeasurementVectorType temp;
temp.Fill(0);
// fill the image
while (!iter.IsAtEnd())
{
temp[0] = count;
temp[1] = 2 * count;
temp[2] = 3 * count;
iter.Set(temp);
++iter;
++count;
}
// creates an ImageToListSampleAdaptor object
using ImageToListSampleFilterType = itk::Statistics::ImageToListSampleFilter<ImageType, MaskImageType>;
auto sampleGeneratingFilter = ImageToListSampleFilterType::New();
sampleGeneratingFilter->SetInput(image);
try
{
sampleGeneratingFilter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
using ListSampleType = ImageToListSampleFilterType::ListSampleType;
using StandardDeviationPerComponentSampleFilterType =
itk::Statistics::StandardDeviationPerComponentSampleFilter<ListSampleType>;
StandardDeviationPerComponentSampleFilterType::Pointer standardDeviationFilter =
StandardDeviationPerComponentSampleFilterType::New();
std::cout << standardDeviationFilter->GetNameOfClass() << std::endl;
// Invoke update before adding an input. An exception should be
try
{
standardDeviationFilter->Update();
std::cerr << "Exception should have been thrown since Update() is invoked without setting an input " << std::endl;
return EXIT_FAILURE;
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception caught: " << excp << std::endl;
}
standardDeviationFilter->ResetPipeline();
if (standardDeviationFilter->GetInput() != nullptr)
{
std::cerr << "GetInput() should return nullptr if the input has not been set" << std::endl;
return EXIT_FAILURE;
}
standardDeviationFilter->SetInput(sampleGeneratingFilter->GetOutput());
try
{
standardDeviationFilter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
standardDeviationFilter->Print(std::cout);
const double epsilon = 1e-6;
// CHECK THE RESULTS
using MeasurementVectorRealType = StandardDeviationPerComponentSampleFilterType::MeasurementVectorRealType;
using MeasurementVectorRealDecoratedType =
StandardDeviationPerComponentSampleFilterType::MeasurementVectorRealDecoratedType;
const MeasurementVectorRealDecoratedType * standardDeviationDecorator =
standardDeviationFilter->GetStandardDeviationPerComponentOutput();
const MeasurementVectorRealDecoratedType * meanDecorator = standardDeviationFilter->GetMeanPerComponentOutput();
MeasurementVectorRealType standardDeviation = standardDeviationDecorator->Get();
std::cout << "Standard deviation: " << standardDeviation << std::endl;
MeasurementVectorRealType mean = meanDecorator->Get();
std::cout << "Mean : " << mean << std::endl;
MeasurementVectorRealType standardDeviation2 = standardDeviationFilter->GetStandardDeviationPerComponent();
if ((itk::Math::abs(standardDeviation[0] - standardDeviation2[0]) > epsilon) ||
(itk::Math::abs(standardDeviation[1] - standardDeviation2[1]) > epsilon) ||
(itk::Math::abs(standardDeviation[2] - standardDeviation2[2]) > epsilon))
{
std::cerr << "Standard Deviation value retrieved using Get() and the decorator are not the same:: "
<< standardDeviation << ',' << standardDeviation2 << std::endl;
return EXIT_FAILURE;
}
using CovarianceSampleFilterType = itk::Statistics::CovarianceSampleFilter<ListSampleType>;
auto covarianceFilter = CovarianceSampleFilterType::New();
covarianceFilter->SetInput(sampleGeneratingFilter->GetOutput());
try
{
covarianceFilter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception caught: " << excp << std::endl;
}
CovarianceSampleFilterType::MeasurementVectorRealType meanCalculatedUsingCovarianceSampleFilter =
covarianceFilter->GetMean();
if ((itk::Math::abs(meanCalculatedUsingCovarianceSampleFilter[0] - mean[0]) > epsilon) ||
(itk::Math::abs(meanCalculatedUsingCovarianceSampleFilter[1] - mean[1]) > epsilon) ||
(itk::Math::abs(meanCalculatedUsingCovarianceSampleFilter[2] - mean[2]) > epsilon))
{
std::cerr << "Mean calculated using the CovarianceSampleFilter is different from the one calculated using the "
"StandardDeviationPerComponentSampleFilter "
<< std::endl;
return EXIT_FAILURE;
}
CovarianceSampleFilterType::MatrixType covarianceCalculatedUsingCovarianceSampleFilter =
covarianceFilter->GetCovarianceMatrix();
for (unsigned int k = 0; k < MeasurementVectorSize; ++k)
{
const double variance = covarianceCalculatedUsingCovarianceSampleFilter(k, k);
const double standardDeviationValue = std::sqrt(variance);
if ((itk::Math::abs(standardDeviationValue - standardDeviation[k]) > epsilon))
{
std::cerr << "Standard deviation calculated using the CovarianceSampleFilter";
std::cerr << " (as the square root of the diagonal) is different from ";
std::cerr << " the one calculated using the StandardDeviationPerComponentSampleFilter " << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|