File: itkStatisticsAlgorithmTest2.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (188 lines) | stat: -rw-r--r-- 5,111 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageToListSampleAdaptor.h"
#include "itkStatisticsAlgorithm.h"

#include <vector>
#include <algorithm>

using PixelType = itk::FixedArray<int, 3>;
using ImageType = itk::Image<PixelType, 3>;

using SampleType = itk::Statistics::ImageToListSampleAdaptor<ImageType>;
using SubsampleType = itk::Statistics::Subsample<SampleType>;

constexpr unsigned int testDimension = 1;

void resetData(itk::Image<PixelType, 3>::Pointer image, std::vector<int> & refVector)
{
  ImageType::IndexType index;
  ImageType::SizeType  size;
  size = image->GetLargestPossibleRegion().GetSize();

  unsigned long x;
  unsigned long y;
  unsigned long z;
  PixelType     temp;

  // fill the image with random values
  for (z = 0; z < size[2]; ++z)
  {
    index[2] = z;
    temp[2] = rand();
    for (y = 0; y < size[1]; ++y)
    {
      index[1] = y;
      temp[1] = rand();
      for (x = 0; x < size[0]; ++x)
      {
        index[0] = x;
        temp[0] = rand();
        image->SetPixel(index, temp);
      }
    }
  }

  // fill the vector
  itk::ImageRegionIteratorWithIndex<ImageType> i_iter(image, image->GetLargestPossibleRegion());
  i_iter.GoToBegin();
  std::vector<int>::iterator viter;

  refVector.resize(size[0] * size[1] * size[2]);
  viter = refVector.begin();
  while (viter != refVector.end())
  {
    *viter = i_iter.Get()[testDimension];
    ++viter;
    ++i_iter;
  }

  // sort result using stl vector for reference
  std::sort(refVector.begin(), refVector.end());
}

bool
isSortedOrderCorrect(std::vector<int> & ref, itk::Statistics::Subsample<SampleType>::Pointer subsample)
{
  bool                    ret = true;
  auto                    viter = ref.begin();
  SubsampleType::Iterator siter = subsample->Begin();
  while (siter != subsample->End())
  {
    if (*viter != siter.GetMeasurementVector()[testDimension])
    {
      ret = false;
    }
    ++siter;
    ++viter;
  }

  return ret;
}


int
itkStatisticsAlgorithmTest2(int, char *[])
{
  std::cout << "Statistics Algorithm Test \n \n";
  bool        pass = true;
  std::string whereFail = "";

  // creates an image and allocate memory
  auto image = ImageType::New();

  ImageType::SizeType size;
  size.Fill(5);

  ImageType::IndexType index;
  index.Fill(0);

  ImageType::RegionType region{ index, size };

  image->SetLargestPossibleRegion(region);
  image->SetBufferedRegion(region);
  image->Allocate();

  // creates an ImageToListSampleAdaptor object
  auto sample = SampleType::New();
  sample->SetImage(image);

  // creates a Subsample object using the ImageToListSampleAdaptor object
  auto subsample = SubsampleType::New();
  subsample->SetSample(sample);

  // each algorithm test will be compared with the sorted
  // refVector
  std::vector<int> refVector;

  // creates a subsample with all instances in the image
  subsample->InitializeWithAllInstances();

  // InsertSort algorithm test

  // fill the image with random values and fill and sort the
  // refVector
  resetData(image, refVector);

  itk::Statistics::Algorithm::InsertSort<SubsampleType>(subsample, testDimension, 0, subsample->Size());
  if (!isSortedOrderCorrect(refVector, subsample))
  {
    pass = false;
    whereFail = "InsertSort";
  }

  // HeapSort algorithm test
  resetData(image, refVector);
  itk::Statistics::Algorithm::HeapSort<SubsampleType>(subsample, testDimension, 0, subsample->Size());
  if (!isSortedOrderCorrect(refVector, subsample))
  {
    pass = false;
    whereFail = "HeapSort";
  }

  // IntospectiveSort algorithm test
  resetData(image, refVector);
  itk::Statistics::Algorithm::IntrospectiveSort<SubsampleType>(subsample, testDimension, 0, subsample->Size(), 16);
  if (!isSortedOrderCorrect(refVector, subsample))
  {
    pass = false;
    whereFail = "IntrospectiveSort";
  }

  // QuickSelect algorithm test
  resetData(image, refVector);
  SubsampleType::MeasurementType median = itk::Statistics::Algorithm::QuickSelect<SubsampleType>(
    subsample, testDimension, 0, subsample->Size(), subsample->Size() / 2);
  if (refVector[subsample->Size() / 2] != median)
  {
    pass = false;
    whereFail = "QuickSelect";
  }

  if (!pass)
  {
    std::cerr << "Test failed in " << whereFail << '.' << std::endl;
    return EXIT_FAILURE;
  }


  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}