1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageToListSampleAdaptor.h"
#include "itkStatisticsAlgorithm.h"
#include <vector>
#include <algorithm>
using PixelType = itk::FixedArray<int, 3>;
using ImageType = itk::Image<PixelType, 3>;
using SampleType = itk::Statistics::ImageToListSampleAdaptor<ImageType>;
using SubsampleType = itk::Statistics::Subsample<SampleType>;
constexpr unsigned int testDimension = 1;
void resetData(itk::Image<PixelType, 3>::Pointer image, std::vector<int> & refVector)
{
ImageType::IndexType index;
ImageType::SizeType size;
size = image->GetLargestPossibleRegion().GetSize();
unsigned long x;
unsigned long y;
unsigned long z;
PixelType temp;
// fill the image with random values
for (z = 0; z < size[2]; ++z)
{
index[2] = z;
temp[2] = rand();
for (y = 0; y < size[1]; ++y)
{
index[1] = y;
temp[1] = rand();
for (x = 0; x < size[0]; ++x)
{
index[0] = x;
temp[0] = rand();
image->SetPixel(index, temp);
}
}
}
// fill the vector
itk::ImageRegionIteratorWithIndex<ImageType> i_iter(image, image->GetLargestPossibleRegion());
i_iter.GoToBegin();
std::vector<int>::iterator viter;
refVector.resize(size[0] * size[1] * size[2]);
viter = refVector.begin();
while (viter != refVector.end())
{
*viter = i_iter.Get()[testDimension];
++viter;
++i_iter;
}
// sort result using stl vector for reference
std::sort(refVector.begin(), refVector.end());
}
bool
isSortedOrderCorrect(std::vector<int> & ref, itk::Statistics::Subsample<SampleType>::Pointer subsample)
{
bool ret = true;
auto viter = ref.begin();
SubsampleType::Iterator siter = subsample->Begin();
while (siter != subsample->End())
{
if (*viter != siter.GetMeasurementVector()[testDimension])
{
ret = false;
}
++siter;
++viter;
}
return ret;
}
int
itkStatisticsAlgorithmTest2(int, char *[])
{
std::cout << "Statistics Algorithm Test \n \n";
bool pass = true;
std::string whereFail = "";
// creates an image and allocate memory
auto image = ImageType::New();
ImageType::SizeType size;
size.Fill(5);
ImageType::IndexType index;
index.Fill(0);
ImageType::RegionType region{ index, size };
image->SetLargestPossibleRegion(region);
image->SetBufferedRegion(region);
image->Allocate();
// creates an ImageToListSampleAdaptor object
auto sample = SampleType::New();
sample->SetImage(image);
// creates a Subsample object using the ImageToListSampleAdaptor object
auto subsample = SubsampleType::New();
subsample->SetSample(sample);
// each algorithm test will be compared with the sorted
// refVector
std::vector<int> refVector;
// creates a subsample with all instances in the image
subsample->InitializeWithAllInstances();
// InsertSort algorithm test
// fill the image with random values and fill and sort the
// refVector
resetData(image, refVector);
itk::Statistics::Algorithm::InsertSort<SubsampleType>(subsample, testDimension, 0, subsample->Size());
if (!isSortedOrderCorrect(refVector, subsample))
{
pass = false;
whereFail = "InsertSort";
}
// HeapSort algorithm test
resetData(image, refVector);
itk::Statistics::Algorithm::HeapSort<SubsampleType>(subsample, testDimension, 0, subsample->Size());
if (!isSortedOrderCorrect(refVector, subsample))
{
pass = false;
whereFail = "HeapSort";
}
// IntospectiveSort algorithm test
resetData(image, refVector);
itk::Statistics::Algorithm::IntrospectiveSort<SubsampleType>(subsample, testDimension, 0, subsample->Size(), 16);
if (!isSortedOrderCorrect(refVector, subsample))
{
pass = false;
whereFail = "IntrospectiveSort";
}
// QuickSelect algorithm test
resetData(image, refVector);
SubsampleType::MeasurementType median = itk::Statistics::Algorithm::QuickSelect<SubsampleType>(
subsample, testDimension, 0, subsample->Size(), subsample->Size() / 2);
if (refVector[subsample->Size() / 2] != median)
{
pass = false;
whereFail = "QuickSelect";
}
if (!pass)
{
std::cerr << "Test failed in " << whereFail << '.' << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|