1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkMeanSampleFilter.h"
#include "itkListSample.h"
#include "itkSubsample.h"
int
itkSubsampleTest3(int, char *[])
{
std::cout << "MeanSampleFilter test \n \n";
constexpr unsigned int MeasurementVectorSize = 2;
constexpr unsigned int numberOfMeasurementVectors = 5;
unsigned int counter;
using MeasurementVectorType = itk::FixedArray<float, MeasurementVectorSize>;
using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;
auto sample = SampleType::New();
sample->SetMeasurementVectorSize(MeasurementVectorSize);
MeasurementVectorType measure;
// reset counter
counter = 0;
while (counter < numberOfMeasurementVectors)
{
for (unsigned int i = 0; i < MeasurementVectorSize; ++i)
{
measure[i] = counter;
}
sample->PushBack(measure);
counter++;
}
using SubsampleType = itk::Statistics::Subsample<SampleType>;
auto subsample = SubsampleType::New();
subsample->SetSample(sample);
// Initialize the subsample with all the samples
subsample->InitializeWithAllInstances();
using FilterType = itk::Statistics::MeanSampleFilter<SubsampleType>;
auto filter = FilterType::New();
filter->SetInput(subsample);
try
{
filter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception caught: " << excp << std::endl;
}
const FilterType::MeasurementVectorDecoratedType * decorator = filter->GetOutput();
FilterType::MeasurementVectorType meanOutput = decorator->Get();
FilterType::MeasurementVectorType mean;
mean[0] = 2.0;
mean[1] = 2.0;
std::cout << meanOutput[0] << ' ' << mean[0] << ' ' << meanOutput[1] << ' ' << mean[1] << ' ' << std::endl;
FilterType::MeasurementVectorType::ValueType epsilon = 1e-6;
if ((itk::Math::abs(meanOutput[0] - mean[0]) > epsilon) || (itk::Math::abs(meanOutput[1] - mean[1]) > epsilon))
{
std::cerr << "The result is not what is expected" << std::endl;
return EXIT_FAILURE;
}
// Clear and repopulate the subsample container
subsample->Clear();
// add only the first half of instances of the sample
for (SampleType::InstanceIdentifier id = 0; id < static_cast<SampleType::InstanceIdentifier>(sample->Size() / 2);
id++)
{
subsample->AddInstance(id);
}
std::cout << "Subsample size: " << subsample->Size() << std::endl;
try
{
filter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception caught: " << excp << std::endl;
}
decorator = filter->GetOutput();
meanOutput = decorator->Get();
mean[0] = 0.5;
mean[1] = 0.5;
std::cout << meanOutput[0] << ' ' << mean[0] << ' ' << meanOutput[1] << ' ' << mean[1] << ' ' << std::endl;
if ((itk::Math::abs(meanOutput[0] - mean[0]) > epsilon) || (itk::Math::abs(meanOutput[1] - mean[1]) > epsilon))
{
std::cerr << "The result is not what is expected" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|